IN THE SUPREME COURT OF THE STATE OF NEVADA

Case No. 81224

DIAMOND NATURAL RESOURCES PROTECTION & CENSIERVICATION; J&T FARMS, LLC; GALLAGHER FARSED 232020 01:17 p.m. LOMMORI; M&C HAY; CONLEY LAND & LIVESTOCE IZABETIA, Brown ETCHEVERRY; NICK ETCHEVERRY; TIM HALPIN; SANDI HALPIN; DIAMOND VALLEY HAY COMPANY, INC.; MARK MOYLE FARMS LLC; D.F. & E.M. PALMORE FAMILY TRUST; WILLIAM H. NORTON; PATRICIA NORTON; SESTANOVICH HAY & CATTLE, LLC; JERRY ANDERSON; BILL BAUMAN; DARLA BAUMAN; TIM WILSON, P.E., NEVADA STATE ENGINEER, DIVISION OF WATER RESOURCES, DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES; AND EUREKA COUNTY;

Appellants,

v.

DIAMOND VALLEY RANCH, LLC; AMERICAN FIRST FEDERAL, INC.; BERG PROPERTIES CALIFORNIA, LLC; BLANCO RANCH, LLC; BETH MILLS, TRUSTEE MARSHALL FAMILY TRUST; TIMOTHY LEE BAILEY; CONSTANCE MARIE BAILEY; FRED BAILEY; CAROLYN BAILEY; SADLER RANCH, LLC; IRA R. RENNER; AND MONTIRA RENNER,

Respondents.

Appeal From Order Granting Petitions for Judicial Review Seventh Judicial District Court of Nevada Case No. CV-1902-348

JOINT APPENDIX VOLUME V

LEONARD LAW, PC Debbie Leonard (#8260) 955 S. Virginia St., Suite 220, Reno, NV 89502 775-964-4656 debbie@leonardlawpc.com

CHRONOLOGICAL INDEX TO JOINT APPENDIX

DATE	DOCUMENT	VOLUME	PAGE RANGE
02/11/2019	Sadler Ranch, LLC and Daniel S. Venturacci's Petition for Judicial Review (filed in Case No. CV-1902-349, later consolidated with CV-1902- 348)	Ι	JA0001-0089
02/11/2019	Bailey Petitioners' Notice of Appeal and Petition for Review of Nevada State Engineer Order No. 1302 (filed in Case No. CV-1902-350, later consolidated with CV-1902- 348	Ι	JA0090-0115
02/11/2019	Ira R. and Montira Renner Petition for Judicial Review	Ι	JA0116-0144
04/03/2019	Eureka County's Motion to Intervene	Ι	JA0145-0161
04/05/2019	Notice of Entry of Stipulation and Order to Consolidate Cases	Ι	JA0162-0182
04/25/2019	Order Following Telephone Status Hearing Held April 9, 2019	Ι	JA0183-0186
04/26/2019	Letter to Chambers re Stipulated Extension for Record on Appeal	Ι	JA0187-0188
05/10/2019	Order Granting Eureka County's Motion to Intervene	Ι	JA0189-0190
05/13/2019	DNRPCA Intervenors' Motion to Intervene	Ι	JA0191-0224

DATE	DOCUMENT	VOLUME	PAGE RANGE
05/28/2019	Unopposed Motion to Extend Time to File the State Engineer's Record on Appeal	Ι	JA0225-0232
06/07/2019	Order Granting DNRPCA Intervenors' Motion to Intervene	Ι	JA0233-0234
06/07/2019	Order Granting Motion to Extend Time to File The State Engineer's Record on Appeal	Ι	JA0235
06/11/2019	State Engineer Motion in Limine	II	JA0236-0307
06/11/2019	Summary of Record on Appeal and Record on Appeal bates-numbered SE ROA 1-952	II (JA0308-0479) III (JA0480-0730) IV (JA0731-0965) V (JA0966-1196) VI (JA1197-1265)	JA0308-1265
06/11/2019	Order Following Telephone Status Conference Held June 4, 2019	VI	JA1266-1268
06/14/2019	Notice of Withdrawal of Petitioner Daniel S. Venturacci	VI	JA1269-1271
06/20/2019	Eureka County's Joinder to State Engineer's Motion in Limine	VI	JA1272-1275
06/24/2019	Opposition of Baileys to Motion in Limine	VI	JA1276-1285
06/24/2019	Sadler Ranch, LLC and Ira R. and Montira Renner Opposition to Motion in Limine	VI	JA1286-1314
06/24/2019	DNRPCA Intervenor's Joinder to State Engineer's Motion in Limine and Eureka County's Joinder Thereto	VI	JA1315-1317

DATE	DOCUMENT	VOLUME	PAGE RANGE
07/01/2019	Notice of Mailing of Notice of Legal Proceedings	VI	JA1318-1330
07/01/2019	DNRPCA Intervenor's Reply in Support of Joinder to State Engineer's Motion in Limine and Eureka County's Joinder Thereto	VI	JA1331-1336
07/01/2019	Eureka County's Joinder to State Engineer's and DNRPCA's Replies in Support of Motion in Limine	VI	JA1337-1341
07/02/2019	State Engineer's Reply in Support of Motion in Limine	VI	JA1342-1353
07/31/2019	Motion to Intervene by Beth Mills, Trustee of the Marshall Family Trust	VI	JA1354-1358
08/01/2019	Motion to Intervene field by Diamond Valley Ranch, LLC, American First Federal, Inc., Berg Properties California, LLC and Blanco Ranch, LLC	VI	JA1359-1368
09/04/2019	Order Granting Motion in Limine	VI	JA1369-1378
09/06/2019	Order Granting Motion to Intervene for Diamond Valley Ranch, LLC, American First Federal, Inc., Berg Properties California, LLC and Blanco Ranch, LLC	VI	JA1379-1382
09/16/2019	Opening Brief of Petitioners Sadler Ranch, LLC and Ira R. and Montira Renner	VII	JA1383-1450
09/16/2019	Opening Brief of Bailey Petitioners	VII	JA1451-1490

DATE	DOCUMENT	VOLUME	PAGE RANGE
10/23/2019	DNRPCA Intervenors' Answering Brief	VII	JA1491-1522
10/23/2019	DNRPCA Intervenors' Addendum to Answering Brief	VII	JA1523-1626
10/23/2019	State Engineer's Answering Brief	VIII	JA1627-1674
10/23/2019	Answering Brief of Eureka County	VIII	JA1675-1785
11/26/2019	Reply Brief of Petitioners Sadler Ranch, LLC and Ira R. and Montira Renner	IX	JA1786-1818
11/26/2019	Sadler Ranch, LLC and Ira R. & Montira Renner's Addendum to Reply Brief	IX	JA1819-1855
11/26/2019	Reply Brief of Bailey Petitioners and Addendum to Bailey Reply Brief	IX	JA1856-1945
12/10/2019	Transcript of Proceedings, Oral Argument Volume I	Х	JA1946-2154
12/10/2019	Opening Argument of Bailey Petitioners Presentation	Х	JA2155-2184
12/10/2019	Sadler Ranch & Ira & Montira Renner Opening Argument Presentation	XI	JA2185-2278
12/10/2019	Eureka County's Presentation	XI	JA2279-2289
12/11/2019	Transcript of Proceedings, Oral Argument Volume II	XI	JA2290-2365
12/11/2019	DNRPCA Intervenors' Presentation	XI	JA2366-2380

DATE	DOCUMENT	VOLUME	PAGE RANGE
04/27/2020	Findings of Fact, Conclusions of Law, Order Granting Petitions for Judicial Review	XI	JA2381-2420
04/30/2020	Notice of Entry of Order filed by Sadler Ranch, LLC and Ira R. and Montira Renner	XII	JA2421-2464
04/30/2020	Notice of Entry of Findings of Fact, Conclusion of Law, Order Granting Petitions for Judicial Review filed by Bailey Petitioners	XII	JA2465-2507
05/14/2020	DNRPCA Intervenors' Notice of Appeal	XII	JA2508-2554
05/14/2020	DNRPCA Intervenors' Motion for Stay Pending Appeal of Order Granting Petitions for Judicial Review of State Engineer Order 1302	XIII	JA2555-2703
05/15/2020	State Engineer Notice of Appeal	XIII	JA2704-2797
05/19/2020	State Engineer Joinder to DNRPCA Intervenors' Motion for Stay Pending Appeal of Order Granting Petitions for Judicial Review of State Engineer Order 1302	XIII	JA2798-2802
05/19/2020	Order Denying DNRPCA Intervenors' Ex Parte Motion for Order Shortening Time; Order Granting DNRPCA Intervenors' Motion for Temporary Stay Pending Decision on Intervenors' Motion for Stay Pending Appeal	XIV	JA2803-2807
05/21/2020	Eureka County's Notice of Appeal	XIV	JA2808-2811

DATE	DOCUMENT	VOLUME	PAGE RANGE
05/21/2020	Eureka County Joinder to DNRPCA Intervenors' Motion for Stay Pending Appeal of Order Granting Petitions for Judicial Review of State Engineer Order 1302	XIV	JA2812-2815
05/27/2020	Opposition of Bailey Petitioners to DNRPCA Intervenors' Motion for Stay Pending Appeal of Order Granting Petitions for Judicial Review of State Engineer Order 1302	XIV	JA2816-2831
05/27/2020	Sadler Ranch and Ira R. and Montira Renner's Opposition to Motion for Stay Pending Appeal	XIV	JA2832-2864
06/01/2020	DNRPCA Intervenors' Reply in Support of Motion for Stay Pending Appeal of Order Granting Petitions for Judicial Review of State Engineer Order 1302	XIV	JA2865-2929
06/01/2020	State Engineer's Reply in Support of DNRPCA Intervenors' Motion for Stay Pending Appeal of Order Granting Petitions for Judicial Review of State Engineer Order 1302	XIV	JA2930-2941
06/01/2020	Eureka County's Reply in Support of Motion for Stay Pending Appeal	XIV	JA2942-3008
6/30/2020	Order Denying DNRPCA Intervenors' Motion for Stay Pending Appeal	XIV	JA3009-3013

ALPHABETICAL INDEX TO JOINT APPENDIX

DATE	DOCUMENT	VOLUME	PAGE RANGE
10/23/2019	Answering Brief of Eureka County	VIII	JA1675-1785
02/11/2019	Bailey Petitioners' Notice of Appeal and Petition for Review of Nevada State Engineer Order No. 1302 (filed in Case No. CV-1902-350, later consolidated with CV-1902- 348	Ι	JA0090-0115
06/24/2019	DNRPCA Intervenor's Joinder to State Engineer's Motion in Limine and Eureka County's Joinder Thereto	VI	JA1315-1317
07/01/2019	DNRPCA Intervenor's Reply in Support of Joinder to State Engineer's Motion in Limine and Eureka County's Joinder Thereto	VI	JA1331-1336
10/23/2019	DNRPCA Intervenors' Addendum to Answering Brief	VII	JA1523-1626
10/23/2019	DNRPCA Intervenors' Answering Brief	VII	JA1491-1522
05/14/2020	DNRPCA Intervenors' Motion for Stay Pending Appeal of Order Granting Petitions for Judicial Review of State Engineer Order 1302	XIII	JA2555-2703
05/13/2019	DNRPCA Intervenors' Motion to Intervene	Ι	JA0191-0224
05/14/2020	DNRPCA Intervenors' Notice of Appeal	XII	JA2508-2554

DATE	DOCUMENT	VOLUME	PAGE RANGE
12/11/2019	DNRPCA Intervenors' Presentation	XI	JA2366-2380
06/01/2020	DNRPCA Intervenors' Reply in Support of Motion for Stay Pending Appeal of Order Granting Petitions for Judicial Review of State Engineer Order 1302	XIV	JA2865-2929
05/21/2020	Eureka County Joinder to DNRPCA Intervenors' Motion for Stay Pending Appeal of Order Granting Petitions for Judicial Review of State Engineer Order 1302	XIV	JA2812-2815
07/01/2019	Eureka County's Joinder to State Engineer's and DNRPCA's Replies in Support of Motion in Limine	VI	JA1337-1341
06/20/2019	Eureka County's Joinder to State Engineer's Motion in Limine	VI	JA1272-1275
04/03/2019	Eureka County's Motion to Intervene	Ι	JA0145-0161
05/21/2020	Eureka County's Notice of Appeal	XIV	JA2808-2811
12/10/2019	Eureka County's Presentation	XI	JA2279-2289
06/01/2020	Eureka County's Reply in Support of Motion for Stay Pending Appeal	XIV	JA2942-3008
04/27/2020	Findings of Fact, Conclusions of Law, Order Granting Petitions for Judicial Review	XI	JA2381-2420
02/11/2019	Ira R. and Montira Renner Petition for Judicial Review	Ι	JA0116-0144

DATE	DOCUMENT	VOLUME	PAGE RANGE
04/26/2019	Letter to Chambers re Stipulated Extension for Record on Appeal	Ι	JA0187-0188
07/31/2019	Motion to Intervene by Beth Mills, Trustee of the Marshall Family Trust	VI	JA1354-1358
08/01/2019	Motion to Intervene field by Diamond Valley Ranch, LLC, American First Federal, Inc., Berg Properties California, LLC and Blanco Ranch, LLC	VI	JA1359-1368
04/30/2020	Notice of Entry of Findings of Fact, Conclusion of Law, Order Granting Petitions for Judicial Review filed by Bailey Petitioners	XII	JA2465-2507
04/30/2020	Notice of Entry of Order filed by Sadler Ranch, LLC and Ira R. and Montira Renner	XII	JA2421-2464
04/05/2019	Notice of Entry of Stipulation and Order to Consolidate Cases	Ι	JA0162-0182
07/01/2019	Notice of Mailing of Notice of Legal Proceedings	VI	JA1318-1330
06/14/2019	Notice of Withdrawal of Petitioner Daniel S. Venturacci	VI	JA1269-1271
12/10/2019	Opening Argument of Bailey Petitioners Presentation	Х	JA2155-2184
09/16/2019	Opening Brief of Bailey Petitioners	VII	JA1451-1490
09/16/2019	Opening Brief of Petitioners Sadler Ranch, LLC and Ira R. and Montira Renner	VII	JA1383-1450

DATE	DOCUMENT	VOLUME	PAGE RANGE
05/27/2020	Opposition of Bailey Petitioners to DNRPCA Intervenors' Motion for Stay Pending Appeal of Order Granting Petitions for Judicial Review of State Engineer Order 1302	XIV	JA2816-2831
06/24/2019	Opposition of Baileys to Motion in Limine	VI	JA1276-1285
05/19/2020	Order Denying DNRPCA Intervenors' Ex Parte Motion for Order Shortening Time; Order Granting DNRPCA Intervenors' Motion for Temporary Stay Pending Decision on Intervenors' Motion for Stay Pending Appeal	XIV	JA2803-2807
6/30/2020	Order Denying DNRPCA Intervenors' Motion for Stay Pending Appeal	XIV	JA3009-3013
06/11/2019	Order Following Telephone Status Conference Held June 4, 2019	VI	JA1266-1268
04/25/2019	Order Following Telephone Status Hearing Held April 9, 2019	Ι	JA0183-0186
06/07/2019	Order Granting DNRPCA Intervenors' Motion to Intervene	Ι	JA0233-0234
05/10/2019	Order Granting Eureka County's Motion to Intervene	Ι	JA0189-0190
09/04/2019	Order Granting Motion in Limine	VI	JA1369-1378
06/07/2019	Order Granting Motion to Extend Time to File The State Engineer's Record on Appeal	Ι	JA0235

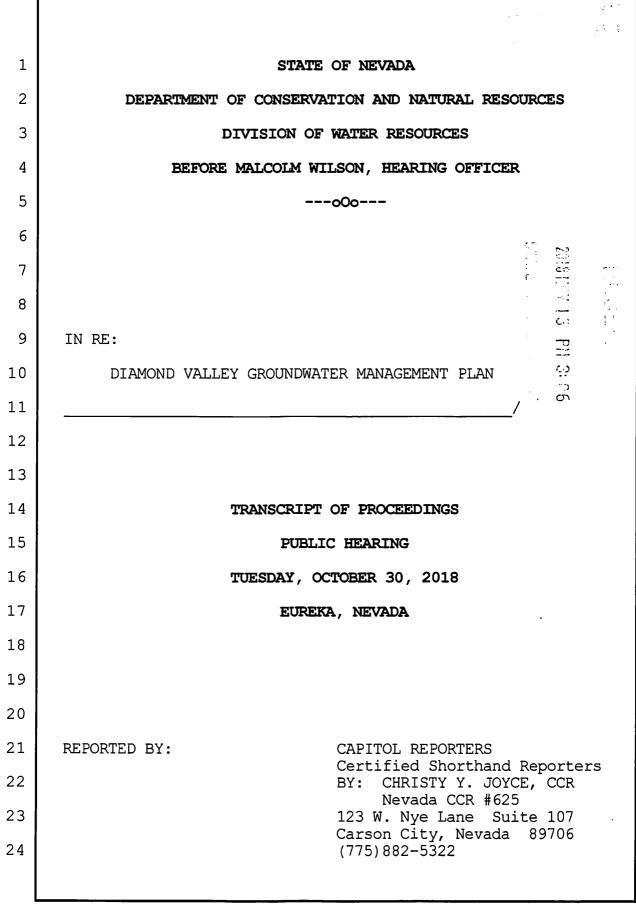
DATE	DOCUMENT	VOLUME	PAGE RANGE
09/06/2019	Order Granting Motion to Intervene for Diamond Valley Ranch, LLC, American First Federal, Inc., Berg Properties California, LLC and Blanco Ranch, LLC	VI	JA1379-1382
11/26/2019	Reply Brief of Bailey Petitioners and Addendum to Bailey Reply Brief	IX	JA1856-1945
11/26/2019	Reply Brief of Petitioners Sadler Ranch, LLC and Ira R. and Montira Renner	IX	JA1786-1818
12/10/2019	Sadler Ranch & Ira & Montira Renner Opening Argument Presentation	XI	JA2185-2278
05/27/2020	Sadler Ranch and Ira R. and Montira Renner's Opposition to Motion for Stay Pending Appeal	XIV	JA2832-2864
02/11/2019	Sadler Ranch, LLC and Daniel S. Venturacci's Petition for Judicial Review (filed in Case No. CV-1902-349, later consolidated with CV-1902- 348)	Ι	JA0001-0089
11/26/2019	Sadler Ranch, LLC and Ira R. & Montira Renner's Addendum to Reply Brief	IX	JA1819-1855
06/24/2019	Sadler Ranch, LLC and Ira R. and Montira Renner Opposition to Motion in Limine	VI	JA1286-1314

DATE	DOCUMENT	VOLUME	PAGE RANGE
05/19/2020	State Engineer Joinder to DNRPCA Intervenors' Motion for Stay Pending Appeal of Order Granting Petitions for Judicial Review of State Engineer Order 1302	XIII	JA2798-2802
06/11/2019	State Engineer Motion in Limine	II	JA0236-0307
05/15/2020	State Engineer Notice of Appeal	XIII	JA2704-2797
10/23/2019	State Engineer's Answering Brief	VIII	JA1627-1674
06/01/2020	State Engineer's Reply in Support of DNRPCA Intervenors' Motion for Stay Pending Appeal of Order Granting Petitions for Judicial Review of State Engineer Order 1302	XIV	JA2930-2941
07/02/2019	State Engineer's Reply in Support of Motion in Limine	VI	JA1342-1353
06/11/2019	Summary of Record on Appeal and Record on Appeal bates-numbered SE ROA 1-952	II (JA0308-0479) III (JA0480-0730) IV (JA0731-0965) V (JA0966-1196) VI (JA1197-1265)	JA0308-1265
12/10/2019	Transcript of Proceedings, Oral Argument Volume I	Х	JA1946-2154
12/11/2019	Transcript of Proceedings, Oral Argument Volume II	XI	JA2290-2365
05/28/2019	Unopposed Motion to Extend Time to File the State Engineer's Record on Appeal	Ι	JA0225-0232

AFFIRMATION

The undersigned does hereby affirm that the preceding document does not contain the social security number of any person.

Date: September 23, 2020


/s/ Debbie Leonard Debbie Leonard (Nevada Bar No. 8260) LEONARD LAW, PC 955 S. Virginia Street, Suite 220 Reno, NV 89502 (775) 964-4656 debbie@leonardlawpc.com

Attorney for DNRPCA Appellants

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that I am an employee of Leonard Law, PC, and that on September 23, 2020, the foregoing document was electronically filed with the Clerk of the Court for the Nevada Supreme Court by using the Nevada Supreme Court's E-Filing system (E-Flex). Participants in the case who are registered with E-Flex as users will be served by the EFlex system. All others will be served by firstclass mail.

> /s/ Tricia Trevino An employee of Leonard Law, PC

1

JA0966

CAPITOL REPORTERS (775) 882-5322

1 TUESDAY, OCTOBER 30, 2018, 10:00 A.M. 2 ------3 HEARING OFFICER WILSON: As set forth in the 4 notice of hearing dated October --5 THE STATE ENGINEER: Ladies and Gentlemen, we're 6 getting started. Mac has got kind of a quiet voice, so he 7 needs to speak up. 8 HEARING OFFICER WILSON: Hopefully I can get 9 close enough to the microphone here. Is that better? As set 10 forth in the notice of hearing dated October 1st, 2018, this 11 is the time and place set for hearing for the State Engineer 12 of Nevada, Division of Water Resources, in the matter of the 13 proposed Groundwater Management Plan, for the petition to 14 approve that plan within the designated Diamond Valley 15 Hydrographic Basin. That's Basin 153 within Eureka, Elko, 16 and White Pine Counties, Nevada. 17 Nevada Revised Statutes Section 534.037 provides 18 that in a basin that has been designated as a critical 19 management area pursuant to NRS Section 534.110(7), a 20 petition for approval of the Groundwater Management Plan for 21 the basin may be submitted to the State Engineer accompanied 22 by the proposed plan. 23 The purpose of this hearing is to provide 24 information to the public and receive written or oral

2

CAPITOL REPORTERS (775) 882-5322

JA0967

1 testimony from any interested person about the proposed plan 2 provided in Nevada Revised Statute Section 534.037. 3 My name is Malcolm Wilson. I'm the hearing officer today for the State Engineer. With me today to my 4 5 left is Jason King, the State Engineer. And then to his left 6 is Adam Sullivan, the deputy administrator for the Division. 7 And to my right is Kristen Geddes, the chief of the hearing 8 section. 9 The hearing will proceed as follows: I will 10 begin with introduction of exhibits the State Engineer would 11 like entered in to the record. And then after that I will 12 use the sign-in sheet in order to call people forward to one 13 of the microphones. If you wish to give public comment, 14 please make sure on the sign-in sheet that you've marked that 15 you intend to. I will just basically go through that and 16 call people up in order. 17 Before I enter the exhibits in to the record, I 18 am going to hand the microphone over to Mr. King, who wants 19 to make some comments. 20 THE STATE ENGINEER: They're very brief. I just 21 wanted to take this opportunity and thank all of the GMP 22 participants for all the blood, sweat, and tears in getting 23 to this point of this process. Diamond Valley is the first 24 and only critical management area in the state, as you all

3

JA0968

1	know. This is the very first hearing of this type in the
2	history of our office on the petition to approve the GMP.
3	So, again, I just really want to acknowledge all the people
4	who have put in all the effort to get us to this point right
5	now. I hope that you get out of this hearing anything you
6	want. We want to hear all of your comments. So, please, if
7	you're on the fence as to whether or not you want to stand up
8	and comment, I would try to encourage you to do that.
9	We've had a request already to see if there could
10	be written comments to the office at a later date. We've
11	talked internally and talked about by close of business this
12	Friday, November 2nd, by 5:00 o'clock. If there are those of
13	you who still want to get in some written comments, you'll
14	have until that time.
15	And with that, I'm going to give it back to Mac.
16	And, again, thank you all for all of your efforts.
17	HEARING OFFICER WILSON: I will now receive
18	introduction of the State Engineer's exhibits, which will be
19	marked 1 through 4. I'll read the exhibit number followed by
20	the name of the exhibit.
21	Exhibit Number 1 is the petition for approval of
22	the Diamond Valley Groundwater Management Plan.
23	Exhibit Number 2 is the Diamond Valley
24	Groundwater Management Planning that's been proposed.

4

JA0969

1 Exhibit Number 3 is the notice of hearing to the 2 county commissioners with the certified mail receipts that 3 were received back. 4 And Exhibit Number 4 is the public notice to the 5 paper and to receive proofs of publication included as well. 6 The plan marked as Exhibit 2 has been available 7 on the home page of the Nevada Division of Water Resources 8 website for recent use for the past month. The public notice 9 marked as Exhibit 4 was also posted as a recent use item for 10 the same time frame. 11 Is there any objections to the admission of these 12 exhibits? Hearing none, they will be admitted. 13 In addition, I will take administrative notice of any other relevant publications, information, and records of 14 15 the office of the State Engineer. 16 UNIDENTIFIED SPEAKER: Can you move the mike a 17 little bit closer? 18 HEARING OFFICER WILSON: Would that be better? 19 UNIDENTIFIED SPEAKER: Yes, definitely. 20 HEARING OFFICER WILSON: At this time we will 21 proceed with public comment. Please be courteous to the 22 speakers. If you have to use your cell phone, please step 23 outside. We are limited on time and need to stay focused on 24 the proposed plan. If you have any questions not directly

5

JA0970

1 related to the plan, please contact our office during regular 2 office hours and a member of our staff will assist you. This 3 is your opportunity to speak while we listen. So please 4 understand we may not be able to immediately answer questions 5 that you raise today. We're grabbing the sheet right now. 6 THE STATE ENGINEER: As Mac said, we have a court 7 reporter here and we want to get down your testimony and 8 comments. So please speak clearly and loudly so that the 9 court reporter can hear you. Thanks. 10 HEARING OFFICER WILSON: The first person I have 11 on the list is Tim Bailey. Mr. Bailey, if you would like to 12 approach either of the microphones. There's one on either 13 side. 14 MR. BAILEY: Can you hear that? 15 HEARING OFFICER WILSON: You're good. 16 MR. BAILEY: For the record, my name is Tim 17 Bailey, T-i-m B-a-i-l-e-y. This document is submitted at the 18 hearing of Groundwater Management Plan held in Eureka, Nevada 19 on October 30th, 2018. I am Timothy Lee Bailey, representing 20 Timothy Lee and Constance Marie Bailey and our irrigation 21 water rights in Diamond Valley. 22 We are opposed to the Groundwater Management 23 Plan. Prior appropriation does not allow for junior water 24 rights to harm a senior water right. Water table level

JA0971

SE ROA 658

1	mainly the drawdown of the water table level in Diamond
2	Valley needs to be taken in to account. No senior water
3	right should be harmed by any junior water right.
4	I have arrived at this decision because I have
5	read numerous water resource bulletins, state water engineer
6	orders, rulings, testimonies and judicial orders, rulings,
7	opinions, testimonies, and court transcripts that pertain to
8	the water in Diamond Valley Hydrographic Basin 10-153.
9	If the State Water Engineer is going to sign this
10	document, I strongly urge you to read these documents
11	pertaining to the water in Diamond Valley Hydrographic Basin
12	10-153 in chronological order before signing this, water
13	resource bulletins, State Water Engineer orders, State Water
14	Engineer rulings, State Water Engineer testimonies, judicial
15	orders, judicial rulings, judicial opinions, testimonies,
16	court transcripts, and hearing transcripts. Thank you for
17	your time.
18	HEARING OFFICER WILSON: Thank you, Mr. Bailey.
19	MR. BAILEY: I know I gave you a copy of this to
20	begin with, but here. So thank you.
21	HEARING OFFICER WILSON: And I will notice that I
22	received copy of the testimony.
23	David Hillis. Come on up, Mr. Hillis.
24	MR. RIGDON: I'm David Rigdon with Taggart and

7

JA0972

1	Taggart. Mr. Hillis, Mr. Shoda, and I have a joint
2	presentation. I was going to go first and then the two of
3	them were going to go. We would ask if we could accommodate
4	that. So if we can defer to Mr. Hillis' testimony until
5	after I speak.
6	HEARING OFFICER WILSON: Yeah. That will be
7	fine. Please go ahead.
8	MR. RIGDON: Now?
9	HEARING OFFICER WILSON: Yeah. Please go ahead.
10	(The court reporter interrupts)
11	MR. RIGDON: Yes. It's David Rigdon,
12	R-i-g-d-o-n, with Taggart and Taggart, LTD. I'm here
13	representing the Sadler Ranch.
14	We appreciate the opportunity to provide
15	testimony here today. And we want to make sure everybody is
16	aware that we're not just here to throw bombs and to throw
17	opposition out. But there are serious concerns that we have
18	with the Groundwater Management Plan as written. We do
19	believe that a properly written Groundwater Management Plan
20	could be developed in the valley that would take in to
21	account the concerns of the senior vested right holders in a
22	much better way and provide them relief from the harm that
23	they're experiencing. So we're not opposed to the idea of
24	having a Groundwater Management Plan. It's just the way this

8

JA0973

1 groundwater management is written has some major problems 2 with it.

3

4

THE STATE ENGINEER: Can you speak closer to the microphone, please, Mr. Rigdon, or raise it, please.

5 MR. RIGDON: I'll move it up a little bit. Is 6 that better? So there's basically three areas that I wanted 7 to speak to you about with regards to the plan. The first is 8 that to prove any GMP the state law says that it must include 9 the necessary steps for removal of the CMA designation of the 10 basin at the end of the plan. So basically at the end of the 11 plan, withdrawals, all withdrawals, not just withdrawals 12 covered by the plan, but all withdrawals in the basin must be 13 less than the perennial yield. And in order to approve the 14 Groundwater Management Plan, in order for the State Engineer 15 to take action, you have to have substantial evidence in the 16 record supporting this system. So there has to be actual 17 scientific evidence supporting the fact that at the end of 18 this plan the basin will be back in balance.

In addition, the proposed GMP as written does not include those necessary steps. And it does not have the evidence with it. Now, we appreciate the opportunity to provide written comments to you by Friday and the extension of time to be able to do that and we will be providing you with written comments that includes an expert report by an

JA0974

CAPITOL REPORTERS (775) 882-5322

9

expert that we've hired that shows that the groundwater plan does not meet those requirements of bringing withdrawal below the perennial yield of the valley and will not actually result in groundwater declines halting in the valley by the end of the plan. And so we'll provide you with that information.

7 We also feel a little bit of a disadvantage. The 8 only evidence that we've been able to review prior to this 9 hearing is what you posted on your website, which is the plan 10 with the appendices. And we assume that that's all the 11 evidence that the proponents of the plan brought forward and 12 put on the record. And if that's the case, that's what we're 13 going off of here. We're assuming that there's no other evidence that's going to be surprised and brought in here 14 15 today. But if there is, we would like the opportunity to 16 respond to that evidence and have our experts look at it.

17 The second issue that we have is that the 18 Groundwater Management Plan doesn't provide mitigation for 19 impact for vested water right holders. And we've got people 20 who have their senior vested rights impacted for 35 years. 21 They've had to go through enormous cost to get mitigation 22 rights issued. They've had to go through enormous cost to 23 build replacement wells, those types of things. There's no 24 mitigation in this plan for either of those past costs or the

10

JA0975

CAPITOL REPORTERS (775) 882-5322

1 future costs that they're going to incur as a result of this
2 plan.

And, third, the Groundwater Management Plan violates other provisions of Nevada water law. And that's just not acceptable. You can't approve a plan that violates mandatory provisions that the legislature has said you must follow. And this plan does that.

8 Now, Mr. Hillis is going to follow me and he's 9 going to give you some information about why in his expert 10 opinion he doesn't believe that the plan includes the 11 necessary steps for the removal of the CMA. And he's got 12 various reasons there.

But the one of them is that the amount of groundwater that we have already removed from the top hundred feet of storage in this basin he estimates at about 1.7 million acre-feet over the last 35 years have been already removed from the top 100 feet of storage in the basin. There was only estimated to be by Harold two million acre-feet of storage in the basin back in 1968.

If this plan is allowed to carry out for 35 years, even with the pumping reduction in the plan, we're going to exceed that two million acre-feet in the basin. It's going to be about 2.5 million acre-feet, which will just continue to create groundwater drought in the basin and

11

CAPITOL REPORTERS (775) 882-5322

JA0976

continue to cause harm to the senior vested rights.

1

Mr. Shoda is also going to get up here and he's going to tell you about the harm that Sadler Ranch specifically has faced as a result of the groundwater declines and what they'll face as a result of future groundwater decline.

7 And I think it's very important to remember that 8 under water law, under the prior appropriation system, a 9 senior -- if juniors take a senior's water, they are 10 obligated to provide that senior not just a mitigation right 11 to drill a well and get more water and replace that water, 12 which has been done and we thank the State Engineer's office 13 for the issuance of mitigation rights. We still have some 14 issues with the amount. But we thank you for the issuance of 15 the mitigation rights. But the juniors also have to -- the 16 senior is supposed to get that water at no additional cost to 17 the senior. That means if water free-flowed on the ranch 18 from a spring and now you have to drill a well and you have 19 to pump that water up and pay for the electricity to pump it 20 up and pay for the maintenance and the well pump and pay for 21 the maintenance of the well and all that type of stuff, those 22 costs have to be made up. There's nothing in this plan, even 23 though those continuous groundwater declines, there's nothing 24 in this plan that provides a mitigation fund to mitigate

12

JA0977

SE ROA 664

those senior vested rights that are subject to forfeiture.
 And there should be.

Now, the things that really strike me -- Dave Hillis is an expert in water rights and how water works and Mr. Shoda is an expert in ranching operations, and he'll tell you all about that. But I'm a lawyer and I look at the plan from the standpoint of does the plan comply with the law. And there's several provisions of this plan that we believe violate mandatory provisions of the state law.

10 And we need to be clear here about something. 11 The Groundwater Management Plan is not the opportunity to 12 write your own water law. That's not what it was intended to 13 be. The Groundwater Management Plan was intended by the 14 legislature to be a system whereby people who have water 15 rights who might get cut in the event of a contaminant 16 because of the completion of a groundwater basin could get 17 together and instead of enforcing senior priority against 18 each other they could agree we'll all take a little bit of a 19 hit so that everybody benefits by that. And that's perfectly 20 fine for the Groundwater Management Plan to do that.

What's not fine is for the Groundwater Management Plan to encroach upon the statutory authority of the State Engineer to take regulatory action. And this plan does that in several important respects. The legislature never

13

CAPITOL REPORTERS (775) 882-5322

JA0978

intended that a plan would replace mandatory provisions of
 state law or the plan would encroach upon the State
 Engineer's regulatory authority.

4 And let me just point out a couple of examples of 5 This is by no means a comprehensive list of these that. 6 examples. But let's start with the banking program. So in 7 the appendix, in the last appendix, I believe it's appendix 8 G -- I forget what the actual index was. But there's a 9 report by Mr. Bugenig about the banking program. And in that 10 report, Mr. Bugenig states that the banking program is an 11 aquifer storage and recovery program and that's what it is. 12 And he states clearly in that report that that brings it 13 under the regulatory purview for ASR projects. But there's 14 been no permanent file for an ASR plan.

15 As you know, if you want to do an aquifer storage 16 recovery program, the law requires there's a stiffer 17 permitting process that you have to go through to do that and 18 there's certain things. It's a mandatory process. The State 19 Engineer says -- The legislature has stated that you must 20 apply for an ASR permit and it must include certain things. 21 And those things include financial feasibility, hydrologic 22 feasibility, all of these types of plans. Those are no where 23 included in this GMP.

24

In addition, we would argue that there is no

14

JA0979

SE ROA 666

1 water available to store it. Any water above the perennial 2 yield that's being appropriated above the perennial yield is by definition water that's not available to store in an ASR 3 4 program. And the ASR program must show the source of the 5 water that you're storing and you must show that it's a 6 properly appropriated source. And this plan doesn't do it. 7 It allows people to bank water year over year. And 8 without -- without having any kind of a right to that water. 9 Any pumping that's occurring above the perennial yield right 10 now is water that people don't have a right to pump. And so 11 you don't have a right to store that water year over year.

12 Another big issue with the plan from a legal 13 standpoint is that a GMP cannot waive, just like with the 14 ASR, the GMP cannot waive the mandatory change application 15 permitting requirements of state law. The GMP the way it's 16 written says you get to turn your permits and your shares and 17 these shares can be traded and they can be moved around 18 between any point of diversion in the valley and they can be 19 pumped for any manner of use. It actually says in the plan 20 any manner of use, not just irrigation. Without having to go 21 through a change application process.

And that's just fundamentally a violation of the statute that says that if you're going to change a water right you have to apply for that change. And there's a

15

JA0980

1 really good reason that that -- there's that mandatory 2 provisional statute. And that's because when you change a 3 water right, when you change a point of diversion, when you change a manner of use, when you change a place of use, a 4 5 conflicts check needs to be done. You need to be able to 6 determine whether those changes will conflict with other 7 water rights and other pumping in the basin. That hasn't 8 been done here.

9 So this plan is essentially -- Essentially what 10 the plan is asking for is basically this super permit, that 11 everybody will have this super permit where they can again 12 pump from any point of diversion, place it on any place of 13 use within Diamond Valley, and put it to any manner of use.

And, again, the manner of use is important, because, remember, the state law mandates you can only have one manner of use per permit. It's right there. You can only have one manner of use per permit.

18THE STATE ENGINEER: Mr. Rigdon, I'm sorry for19interrupting. But I just feel like I have to. Have you20read -- Have you read the plan?

MR. RIGDON: Front to back.

21

THE STATE ENGINEER: You have? Are you familiar with the section on the water use application that goes before our office to review within 14 days that nothing

16

JA0981

SE ROA 668

1 limits the authority of the State Engineer to look at 2 conflicts and if the use is going to last more than one year 3 there has to be a change application? Are you familiar with 4 those provisions?

5 MR. RIGDON: There's a provision about wells. For a new well there's a 14-day time limit. But nothing in 6 7 that provision that I read the way it's written says that the 8 use of water, the change of water from one well to another 9 has to be approved in 14 days or there has to be any 10 application process at all. What the plan says is that if a 11 well is approved and if there is a diversion rate available 12 in that well, you don't have to go ask your office for 13 anything. That's what it says.

14THE STATE ENGINEER: If use lasts more than a15year?

MR. RIGDON: Yes, that's the way I read it. THE STATE ENGINEER: Okay. I mean, it's your public comment. I just was curious because I take some exception to some of the things you're saying. But it's public comment. So thank you.

21 MR. RIGDON: Well, I guess I would ask, are you 22 saying that people will have to -- if I move -- if I sell 23 somebody else my water I will have to file a change permit 24 application for that every single time whether somebody gets

17

SE ROA 669

1 my share?

2	THE STATE ENGINEER: And I hesitated to even
3	speak up because I don't want to get in to a lot of back and
4	forth. But there was some things that you mentioned, again,
5	that I think aren't true as the GMP is written. But that's
6	fine. It's your public comment.
7	MR. RIGDON: Okay. Well, I'm reading it as it's
8	written. So, anyway, there is no change permit application
9	process for moving shares around between wells.
10	You brought up the 14 days. And that's a very,
11	very good point that you brought up because that's another
12	point that I had on here. There's The plan basically says
13	that if they file a permit with the State Engineer and the
14	State Engineer does not give them 14 days, it's automatically
15	approved, a permit for a new well that would be used for less
16	than a year.
17	I would submit to you that you can't waive your
18	responsibility to review permits and approve them. You
19	cannot If the system was the State Engineer will try to
20	get it done in 14 days or it's automatically rejected if it's
21	not done within 14 days, that would be appropriate. But you
22	can't have an automatic approval if it's not acted on in 14
23	days. That's the State Engineer basically deferring his
24	authority to other people. And it's just not appropriate to

18

JA0983

CAPITOL REPORTERS (775) 882-5322

1 have in the plan.

2	And you can't waive compliance with mandatory
3	state well regulations. And the plan has a provision in
4	there where it says that wells will be exempted from NRS 534
5	and NAC 534. It says that right there. Wells will be
6	exempted from those well requirements or those statutes.
7	There's no authority to do that. The legislature has
8	mandated Anything in the NRS is something that the
9	legislature has mandated be done.
10	So the plan as approved as submitted, we don't
11	believe can be approved. It's not legally sufficient. It
12	does not bring the basin back in to balance. There's no
13	mitigation for senior vested right holders who will continue
14	to be harmed in violation of the statute that says there can
15	be no impairment of senior vested right holders. And several
16	of the provisions violate the existing water rights.
17	And we'll provide a written brief by Friday
18	outlining all of these legal arguments and providing the
19	complete citations for everything that I've told you.
20	A properly designed GMP A properly designed
21	GMP would include pumping reductions that are based on
22	groundwater modeling that shows the reduction would actually
23	bring the basin back in to balance. That's the one thing
24	that's really missing in this plan. I don't see the

19

CAPITOL REPORTERS (775) 882-5322

JA0984

groundwater model that shows that these pumping reductions are tied to any of the basins at all. They will actually result in groundwater declines in the valley. All we have is a pumping reduction table. That's it. There's no groundwater model that's been run to show 35 years from now, 40 years from now, what groundwater levels will be or whether the basin will be in balance. There's no monitoring plan.

8 A well-designed GMP would have a monitoring plan. 9 And the monitoring plan would specifically spell out what 10 wells are going to be monitored, how the propagation of cones 11 of depression are going to be monitored, and what the 12 effectiveness of the system, so we can have a positive feedback mechanism on the effectiveness of the reduction to 13 14 see if they are actually doing with the modeling of the 15 ground would show what they can do.

16 Finally, the plan doesn't include any objective 17 triggers or thresholds for future management decisions. And 18 this is an area where, again, when you read the plan with the 19 actual, you know -- The actual language in the plan says for 20 the first ten years the State Engineer cannot deviate from 21 the benchmark reductions in the plan. That's what it says, 22 that the benchmark reductions will not be deviated from. 23 After that ten years, it limits your authority to reduce 24 the -- to change the benchmark reduction to two percent a

20

CAPITOL REPORTERS (775) 882-5322

JA0985 SE ROA 672 1 year.

I would argue that that's something that the State Engineer cannot do. The State Engineer reserves the right to regulate the basin under NRS 534.120. The State Engineer reserves his right to regulate the basin depending on events that happen.

If the Groundwater Management Plan isn't working after five years, then the State Engineer reserves the right to come in and, quite frankly, order straight-up curtailment or order changes from the benchmark reduction plan. But that's not what the plan says. The plan says you don't get to do that.

Finally, a well-designed plan would include mitigation for impacts to vested water right holders and it would also include an advisory board that provides equal representation for senior vested right holders. And I mean equal representation of many senior vested right holders on the board as there are junior right holders.

19If a plan did that, we would support it. But20that would be a plan -- and that would be a plan that would21comply with state law and would comply with all the mandates.22So we're going to have Mr. Hillis come up. He's23going to talk a little bit about the scientific basis as to24why he doesn't think the plan will result in the goal it's

21

JA0986

1 supposed to hit, which is bringing the basin back in to 2 balance at the end of the plan. And Mr. Shoda is going to 3 come up and talk about some of the impacts at the Sadler 4 Ranch. 5 HEARING OFFICER WILSON: Thank you, Mr. Rigdon. 6 Mr. Hillis, please. 7 MR. HILLIS: Good morning. Can you hear me? 8 Good morning. My name is David Hillis. I am the principal 9 engineer for Turnipseed Engineering. 10 THE STATE ENGINEER: You've got to get right on 11 top of it, Dave. 12 MR. HILLIS: Okay. Sorry about that. I was 13 asked to complete a technical review of the Groundwater 14 Management Plan. And in my professional opinion there are 15 some issues with it. My comments today will be limited to 16 two categories. One, in general, I do not believe the plan 17 as written would be able to remove the CMA designation and 18 the plan unduly favors junior water right holders. 19 The plan is -- My belief is the plan does not 20 include the necessary steps to remove the CMP designation as 21 the -- There is no substantial technical evidence to show 22 that the pumping levels, although they will be reduced over 23 time, will actually result in the balance coming back -- the 24 basin coming back within balance. There are no -- The plan

22

JA0987

does not include the triggers and thresholds for management actions. For example, if we start down this plan, we determine that groundwater declines are still occurring on a substantial rate, those pumpings, those pumping reductions, should be looked at to potentially be modified.

6 The USGS and other reports show that even with 7 the reduction that groundwater mining will still be occurring 8 even at the end of the plan. I believe that the end of the 9 plan the total volume of water being removed is 43,500-ish 10 acre-feet. And that's still in excess of the perennial yield 11 and will still be causing unduly harm to senior water right 12 holders and vested claims.

13 In 1968, Arrow reported that in the top hundred 14 acre-foot of the soil, the alluvium, that water-bearing 15 strata across the basin, held two million acre-feet. Looking 16 at some of the appendices that were included in the plan, if 17 you look at the historic pumping and then look at the 18 proposed pumping and how that could occur through the plan's 19 duration, there have already been 175 million acre-feet of 20 that two million that have already been depleted from 21 storage. If the plan were to continue at the pumping levels 22 that are proposed, there would be an approximately 2.5 23 million acre-feet depleted from storage. This is an extreme 24 volume of water.

CAPITOL REPORTERS (775) 882-5322

At the conclusion, the plan will also not reduce the withdrawals below the perennial yield in the basin.

1

2

3 The second point that is a major concern is that 4 I believe the plan unduly favors the junior water right 5 holders. One of the examples of this is the plan, as my 6 understanding, and I've always looked at there is a 20 7 percent difference between what the senior, the most senior 8 water right holder will receive versus the most junior water 9 right holder. And although that may be true in the priority 10 factor, when you actually look at the duty of water that 11 those irrigators, those permit holders, will actually 12 receive, the difference is actually six percent from the most 13 senior to the most junior. Now, I'm specifically talking 14 about what I would care about as an irrigator is how much 15 water am I going to receive from this permit at the end of 16 the plan.

17 So when you review the duty that you will 18 actually receive, the most senior will receive roughly 30 19 percent of his allocation and the most senior water right 20 holder will receive 24 percent of his original allocation. 21 So there's only a difference of six percent, not 20.

The other factor is in the makeup of the advisory board and how voting will continue in the future. The plan states that votes will be counted by a proportionate volume

24

CAPITOL REPORTERS (775) 882-5322

1 of water. Well, as senior water right holders only represent 2 roughly 23 percent of the total allocation in the basin, if 3 all seniors were to determine that they were not in favor of 4 the plan, there is no possible way that they will ever 5 outvote just by the sheer number, the amount of seniors -- or 6 the amount of juniors. 7 Those are really the main portions of the 8 comments. And I will have -- I do have more written 9 comments. And those comments will be submitted on Friday to 10 you. Thank you. 11 HEARING OFFICER WILSON: Thank you, Mr. Hillis. 12 I believe it was Mr. Shoda that was coming up, 13 please. And if you could please spell your name for the 14 record. 15 My name is Levi Shoda. It's spelled MR. SHODA: 16 L-e-v-i S-h-o-d-a. I'm the ranch manager for Sadler Ranch. 17 And my comments are pretty brief. Just as a rancher, one 18 thing that really concerns me about this plan is the prior 19 appropriation doctrine and what Mr. Hillis just spoke about 20 is I don't believe that the seniors are really being 21 protected -- I'm talking about the groundwater right 22 seniors -- through this plan with that small of a margin of 23 pumping. And so that's one big concern that I have. 24 Because, like Mr. King stated at the beginning,

25

CAPITOL REPORTERS (775) 882-5322

JA0990

SE ROA 677

1 this is the first time that this has ever happened. And I 2 don't know that you do it right the first time. It's hard to. But the most important thing is though is if and when or 3 4 when this gets signed on by you, this will set precedence for 5 the rest of the state. And I do believe that, you know, 6 there's a lot of other basins that are in trouble that are 7 going to be going down this road in the future. So I do want 8 to make sure that we do that correct and that we do want to 9 make sure that we protect the prior appropriation doctrine 10 the best that we can.

Secondly, I have a question. I don't know if you can answer this. But, the way you read the plan, does a senior groundwater right holder if he does not sign off on the plan is he forced to forfeit some of his water to a junior water right holder?

16 The way I read the statute, THE STATE ENGINEER: and this is a statute that went in to effect in 2011 as 17 18 Senator Goicoechea, requires a petition by the majority of 19 those water users in a basin. So I interpret that, as a 20 non-attorney, as why would you require a petition by the 21 majority of the users that wasn't binding on all of those users? And in this instance in the GMP it spells out who --22 23 who is in the club. And it's the irrigators and any mining 24 rights that started out. So there's a little bit of a

26

1 long-winded answer, Levi, but, yeah, it's binding on everyone 2 in the GMP. 3 MR. SHODA: Okay. I would agree with that, too, 4 the way I see it. 5 So I quess really my -- ultimately just my 6 concern with the plan is both what Mr. Hillis and Mr. Rigdon 7 both hit on it. I'm just going to reiterate it again. But 8 that there's no continued mitigation for the vested water, 9 that whatever harm still impacts the ranch. And there's 10 nothing to talk about. That's kind of an unknown. We can 11 model it, but we don't know what the future impacts will be. 12 There's nothing in there to go by. So with that, that's 13 really all I have. 14 HEARING OFFICER WILSON: Thank you, Mr. Shoda. 15 Next on the list I have Kenny Benson, if you can 16 come up. 17 MR. BENSON: Yes. For the record, my name is Ken 18 Benson. And I am the owner of valid water rights within this 19 groundwater basin that we're addressing today. I reserve the 20 right to submit extended amended remarks by 5:00 p.m. on 21 Friday. 22 I have not participated at great length in the 23 formulation of the plan because anybody who was perceived as 24 not being in favor with the ongoing bandwagon was not

JA0992

SE ROA 679

particularly well-received. And that would be me. 1 2 Suffice it to say, for a few minutes, this whole 3 process is an abuse of rule of law and has become a mob rule 4 endeavor by junior water right holders to infringe on the 5 rights of senior water right holders. 6 In effect, the continued use and access to the 7 water resource by the juniors will only come at the expense of the seniors. And I don't think that was ever envisioned 8 9 in the state law. Thank you. 10 HEARING OFFICER WILSON: Thank you, Mr. Benson. 11 Travis Gallagher, come on up. 12 MR. GALLAGHER: My name is Travis Gallagher, 13 G-a-l-l-a-g-h-e-r. I do not feel comfortable. I am in 14 support of the GMP, but I will be submitting my written 15 comment. 16 HEARING OFFICER WILSON: Thank you. Let the 17 record show that we did receive the written comment from 18 Mr. Gallagher. 19 A little difficult to read this, so please 20 forgive me. Donald Palmore. 21 MR. PALMORE: Can you hear me? My name is Donald 22 Palmore. 23 HEARING OFFICER WILSON: Could you please spell 24 your last name to make sure we have it correctly.

28

JA0993

1	MR. PALMORE: P-a-l-m-o-r-e. I'll submit this.
2	HEARING OFFICER WILSON: Thank you.
3	MR. PALMORE: When I first came to Diamond Valley
4	60 years ago there were 80 to a hundred acres of hay. Now
5	there are close to 20,000 acres. During the 1960s, we were
6	clearing brush and drilling wells. We used diesel and
7	propane engines to pump water and mostly based grain to get
8	beneficial use to our lands. Many places changed hands
9	several times.
10	In 1972 we got electric power and the price of
11	hay improved.
12	In the early '80s, we had three years of monsoon
13	rains, high power rates, high interest rates and the invasion
14	of rodents. Over the years, much time and energy has been
15	spent just to maintain some control.
16	Despite all the problems, we are now faced with
17	the biggest challenge of all, water. It seems we have only
18	two possible choices: Curtailment or the Groundwater
19	Management Plan. If the choice is curtailment, what will
20	happen? Our power rates will increase and county revenues
21	will decrease, constantly leaving roads to be poorly
22	maintained. Barns with junior water rights will be overrun
23	with rodents and weeds. A return to these difficult
24	experiences of the past is not a welcome choice.

29

JA0994

SE ROA 681

It has taken so many years of struggle to develop Diamond Valley. But I am very willing to share some water as outlined in the Diamond Valley Water Management Plan. I applaud all the senior water right holders who are willing to share water in order for Diamond Valley to continue to prosper.

I would offer special thanks to the committee members who have worked diligently for several years to develop the Diamond Valley Groundwater Management Plan. My best hope is this plan will allow the viability of all the farms to keep the Diamond Valley a beautiful place to live and work as it is now. Thank you.

HEARING OFFICER WILSON: Thank you, Mr. Palmore.
THE STATE ENGINEER: Can we have your written
comment, Mr. Palmore, or no?
UNIDENTIFIED SPEAKER: He handed it in.
THE STATE ENGINEER: I apologize.

HEARING OFFICER WILSON: We did receive thewritten version of Mr. Palmore's comments.

20Ari Erickson, if you could please come up.21MR. ERICKSON: My name is Ari Erickson, A-r-i22E-r-i-c-k-s-o-n.

23 THE STATE ENGINEER: Ari, can you hit the very 24 end of your mike.

30

JA0995

SE ROA 682

1	MR. ERICKSON: Hello. Can you hear me now? My
2	name is Ari Erickson, A-r-i E-r-i-c-k-s-o-n. I want to
3	comment and first thing I would like to do is my father
4	happens to not be able to come to the conference so he had a
5	letter that he sent out in January that I will be giving you.
6	But I would like to read the first paragraph of that letter
7	just so that it kind of explains the personal
8	(The court reporter interrupts)
9	HEARING OFFICER WILSON: And please don't talk
10	too quickly.
11	MR. ERICKSON: Okay. That's a problem. If I
12	start talking too quickly, just wave at me and I'll slow down
13	a little bit. I'm nervous also.
14	Here are the talking points I want to discuss. I
15	have served on numerous boards and committees in my lifetime.
16	And when you are elected to a position, you have a
17	responsibility to represent all the constituents and most
18	importantly the silent. This entails reaching out to them
19	and hearing their voice. Simply because someone doesn't come
20	to the general meetings or senior participate does not negate
21	all the responsibilities to represent them. Still too fast?
22	HEARING OFFICER WILSON: You're starting to pick
23	up speed.
24	MR. ERICKSON: Okay. So I took that counsel to

31

JA0996

SE ROA 683

1 heart because I was on and am still on the Groundwater Management Plan Advisory Board as the mining representative. 2 3 So as I began to go throughout the community and 4 talk to either the people who weren't there or the people I 5 ran across, I came across a gentleman who had a domestic well 6 and his domestic well had dried up and he had to drink out of 7 bottled water for a couple months while he worked on the 8 domestic well. And I asked him if he would be willing to 9 come today to share his experience about the effects of 10 over-pumping on the domestic well. And I think the scariest 11 thing is that he said I will not because I am too afraid. 12 So I am concerned that there are others out 13 there, domestic well holders, that might be too afraid of 14 speaking out about their domestic wells and not coming. 15 So the question I pose is how we can protect the 16 domestic well holders from the effects of an additional 35 17 years of over-pumping. 18 The second point that I would like to bring up is 19 as I was reviewing on line and trying to find if there was 20 dissenting opinion of people who were concerned about our 21 water law in Nevada, it minorly changed in ways that might 22 benefit a local community, was there something else out there 23 that we haven't thought of. And I recently came across a 24 University of Denver Water Law Review that was done January

32

JA0997

1 18th, 2018.

2	HEARING OFFICER WILSON: University of what?
3	MR. ERICKSON: University of Denver, Water Law
4	Review. January 18th, 2018. And this is a direct quote from
5	that. One significant legal issue in Diamond Valley would be
6	how the water market can address the anti-speculation bill.
7	This doctrine provides under Nevada Revised Statute 533.040
8	expressly prohibits a water right from being transferred to
9	parties who do not beneficially use the water. The
10	anti-speculation doctrine seeks to prevent hoarding of water
11	by non-users, which could distort supply for farmers and
12	artificially spike prices.
13	In an additional prior appropriation system,
14	beneficial use stays off speculation, but in a water market,
15	many worry that the water holder might stockpile shares to
16	drive up prices, making it unaffordable.
17	That made me start thinking, well, are we so
18	close to the GMP that we don't think about what would happen.
19	So that reference in Nevada Law Journal from
20	August 8th of 2008 which says avoiding speculation through
21	the trinity of beneficial use. So this is reading from the
22	doctrine. Beneficial use is the linchpin of prior
23	appropriation systems, as it is the basis, measure, and limit
24	of the water right. All western water codes encapsulate the

33

JA0998

SE ROA 685

1 doctrine that created beneficial use, waste, and forfeiture. 2 Many western states' constitutions explicitly include the term beneficial use. 3

4 The definition of beneficial use is similar along 5 prior appropriation jurisdictions and typically includes just about any domestic, agricultural, or industrial activity, 6 7 including sewage treatment, crop production, stock watering, hydroelectric power generation, mining and recreational pursuits. It does not, however, extend to speculative water users.

8

9

10

24

11 So as I was contemplating this and I was starting 12 to think about the basin system that we put in, I realized 13 that though our permit has a beneficial use, if we put water 14 in to a bank and we have exempted the beneficial use 15 requirement of future use of shared transferred water, we 16 might be creating a system where somebody could bank water 17 for a future use without declaring the future use and we 18 might lose control of that and we might allow in a lateral 19 way the water bearance to appear.

20 So the question I pose is how can we protect the 21 intent and purpose of the anti-speculation doctrine while 22 allowing an unrestricted bank, any water banked has no 23 beneficial use associated with that at this time.

The third point is I've recently acquired with my

34

1 wife and my father-in-law and my -- my father, my wife's 2 father-in-law, and my mother, a farm in the valley. And we 3 have a fairly senior water right. Because I knew that if I'm 4 going to invest my livelihood in this valley I would want to 5 make sure that under all conditions I had the ability to 6 continue pumping and continue to farm. And so we bought a 7 water right that was on -- that has a date of March 7th, 8 1960.

9 And on March 7th, 1960, there was 4,766 acre-feet 10 allocated in this basin. At the end of March 7th, 1960, 11 there were 10,846 water rights allocated. So in a single day 12 in our history, 6,079 acre-feet were allocated. Under the GMP, all of us get the same priority. That priority is .958. 13 14 So without getting -- As you can see from the Excel 15 spreadsheet, without getting too technical, the thing that 16 scared me a lot was I would be deficit irrigating on my farm 17 at year three. And what I mean by that is each acre of my 18 farm as its stands alone would need water from somewhere 19 else, be it a dry corner, another farm, a junior farm, or 20 some other asset. At year three I would no longer be able to 21 farm alfalfa under the GMP.

So that made me start wondering, well, if I can't farm and I'm fairly senior at year three, what about the most senior acreage? The most senior acre drops -- So when I say

35

CAPITOL REPORTERS (775) 882-5322

farm, I use your number, you being the State Engineer's office, of 2.5 acre-feet as the consumptive use of the crop. So at year four, the most senior acre goes to 2.412 acre-feet per acre, dropping below that 2.5. So with the bank they will be able to farm until year five. Without a bank they won't be able to farm at year four under the current numbers, so that scared me.

8 So then I went to the most junior and I thought 9 about the two-pivot farmer that has junior water rights, will 10 he be even be able to farm? If we can't farm at year two and 11 three, what about the small land holder, what do they do? 12 And at year one they're below 2.5. So if there is a small 13 land holder with one, maybe two, pivots, they legally won't 14 be able to farm alfalfa at the ET rates and that's 15 concerning.

The other thing that concerned me was at year 35 I will only be able to farm 2.5 acre-feet, 95 acres. I currently possess 200. So as a fully senior water right in the current GMP, I will not be able to farm 200 acres at year three. And at year 35 I will only be able to farm 95 acres of mine, half.

So how do we upload the priority system if my mall family farm would be able to raise alfalfa after year two without getting water from some other source? A lot of

36

JA1001

1 the other sources that have been speculated on is corners. 2 They put in center pivots so there are parts of their farm 3 that they don't irrigate regularly. I don't have corners. Ι 4 don't have the luxury of large land holders. I don't have 5 the luxury of extra farms that I can turn off to make money. 6 I have my two pivots and if those two pivots don't -- And my 7 pivots aren't even full pivots. A whole pivot is a circle, 8 for those that don't know, would be 125. Mine is 102 and 98.

9 The next part is CMA is defined as withdrawals in 10 groundwater consistently exceed the perennial yield of the 11 basin. And this plan must remove the CMA designation. So as 12 I read it, the plan must take all underground pumping below 13 the perennial yield. So the perennial yield recognized by 14 the State Engineer's office and in the plan as well is 30,000 15 acre-feet. What's weird is within the plan itself there's a 16 sub two recommending that the actual perennial yield is 17 35,000 acre-feet annually. So it sounds like there's new 18 science that might give us more water, but as it stands now, 19 it's 30,000 acre-feet.

So Diamond Valley reached -- So 13.12 says Diamond Valley reaches perennial yield are expected to be released within 35 years. As I was reviewing the plan in its entirety last night, I don't know if that's true because we have commercial mining rights, domestic including 120,

37

JA1002 SE ROA 689

1 municipal, quasi-municipal, and stock water. The 120 2 municipal wells that are in the state-issued record are the 3 two acre-feet per acre, so 240. I bring that up to 3,343.8 4 acre-feet that will be pumped at year 35 in addition to the 5 plan reduction, which brings us to -- the plan reduction 6 brings us to 34,171.82. So if you add 34,000 to the 3,000, 7 you get 37,505.62 underground pumping in Diamond Valley in 8 year 35.

9 The other thing that was brought to my attention 10 by some of the ranchers is there is currently a preliminary 11 order of 5100 acre-feet of underground vested rights, which, 12 correct me if I'm wrong, and that would be underground 13 pumping so that should be included in a perennial yield 14 calculation. And that would bring the total pumping in 15 Diamond Valley to 42,615.62.

And so my concern, how does the GMP remove the basin from the CMA designation as it's written now if we count for withdrawals from all sources whether or not they are exempt from the plan? And with that I would like to thank you for your time.

HEARING OFFICER WILSON: Thank you very much.
MR. ERICKSON: I would ask for you to have this.
HEARING OFFICER WILSON: Okay. I received the
written comments.

38

JA1003

Excuse me, John Haeder.

1

T	Excuse me, John Haeder.
2	MR. HAEDER: Good morning. Good to be here. I'm
3	from Reno, Nevada, so I enjoy coming out here to the rural
4	areas once in a while with my work. So I appreciate being
5	out here.
6	My name is John Haeder, J-o-h-n H-a-e-d-e-r. I'm
7	the executive director of Great Basin Resource Watch. We're
8	a 24-year-old non-profit. It was born around 1994 from a
9	coalition of people concerned about environment, ranchers.
10	We actually had a miner on our first board as well.
11	And what we thought was important was to have a
12	public interest organization that looked at mining in Nevada.
13	Our mission is to protect the health, well-being of the land,
14	the air, water, and wildlife and human communities in the
15	Great Basin from the adverse effects of industrial
16	development and resource extraction and use.
17	We've been following developments around the
18	Eureka from our involvement with mining and primarily the
19	Mount Hope project, which as you all know about, enormous
20	project. It's still in the state.
21	So the mining industry significantly acquires
22	water rights and uses a lot of de-watering in the process.
23	And for this reason and the public interest, our organization
24	is interested in this issue as it affects water policy. And

39

JA1004

CAPITOL REPORTERS (775) 882-5322

SE ROA 691

1 that's why we're here and we've gotten involved.

2 A number -- When the draft -- When the first 3 draft of the resource management -- Excuse me -- first draft 4 of the Groundwater Management Plan first came out, I read through it myself. I'm not a water expert by any means. 5 Ι know a little bit. But I actually asked these questions 6 7 organizationally and we wondered given that this is going to be a significant departure or something new from Nevada what 8 9 are going to be the effects? Are there going to be some groups that might be disproportionately affected by this 10 information or other groups that might be favored by it in 11 12 some way?

13 We wanted to answer some of these questions we 14 were wondering about. So we sought an independent analysis. 15 We looked for an organization or a company that could --16 that's not in the community per se but understands water law well, understands Nevada water law, to look at the plan of a 17 18 public interest perspective, who is going to benefit. And so there's a few copies of the hard copies of the report back 19 20 there. So we commissioned the advocates for community environment to review this plan. And what I'm going to talk 21 22 about is really primarily what we got from this review. 23 The plan is the hard copy that I submitted to you

24

40

JA1005

CAPITOL REPORTERS (775) 882-5322

is the larger and there's some back there. And it's also

available on our website and I'll give the people our URL for that if they want to download it. So that's why we're here and what we want to talk about.

The Groundwater Management Plan, this is the first of its kind in Nevada. It has the potential to set an influence precedent in other groundwater management plans in Nevada and elsewhere in the rest of the United States. There possibly could be very broad implication.

9 Our organization appreciates the initiative by 10 the State Engineer in designating the Diamond Valley as a 11 critical management area and the work of all the people that 12 developed the draft plan, taking an important step towards 13 correcting historic overdrafts in Diamond Valley's 14 groundwater system and establishing sustainable approach to 15 future groundwater management and use in the Diamond Valley.

Nonetheless, the report, as we explained in the report, we believe that there are some parts of the plan that are not yet adequate to ensure sound, sustainable and equitable future of the groundwater system and the residents of Diamond Valley that should be improved upon for completeness.

22 So just to stop for a second here, my take from 23 the analysis was done was that a plan like this -- a water 24 marketing system can work but with such a system comes a lot

41

SE ROA 693

of flexibility with what you can do. And my view -- our view is then with that flexibility also comes a lot of responsibility and it requires a lot of oversight. Because it can go in directions that you may not anticipate or go in directions that you do not want. And that's kind of one of the big things that I took away from the analysis.

7 It may be a good way to manage water in the 8 future, especially in the arid west, which is predicted to 9 become drier. It can allow for this flexibility as was 10 mentioned earlier. But the flexibility comes as a 11 responsibility. Overall, the plan is needed additional 12 requirements or constraints to ensure that all of the rules 13 set forth in the plan agreed to by the Diamond Valley 14 community occur.

The analysis addresses potential pitfalls and suggests preventive measures. So the only positive aspects can move forward. So that's what the point of view analysis was.

A couple things about management plans in general. They should maximize conservation of water resources and ensure the groundwater is put to its best use as defined by the affected community. So you as the community have to define what is the best use for water in our area. And the plan should move in that direction and

42

adopt management techniques that promote good stewardship of
 groundwater for future generations and the same access and
 opportunity to the groundwater resources of the current
 users.

5 It's to provide for a transparent system of 6 groundwater governance. This is really critical. People 7 have to really understand what's going on and have to be able 8 to access information, so transparent and transparency is 9 very important.

It should create an institutionalized structure of decision making and government that's fairly representative of the stakeholders connected with those groundwater goals and values.

It also should reflect the range of possible alternative strategies or techniques in achieving the goals in this plan. When the reviewers look at the scope, it appears maybe there was some other approaches that could be pursued that were not discussed in the early phases. And so that may be a weakness also. You may want to go back and think about that.

21 Some general comments about water markets. Water 22 markets as would be done in this plan are increasingly 23 recognized for the potential useful approach to enhanced 24 proficiency and conservation. However, the general view

43

JA1008

SE ROA 695

1 seems to be that markets are not the whole solution and that 2 what remains -- and that there remains a need for a role of 3 proactive oversight and direction from the appropriate 4 regulator, which would be the State Engineer. So it's critical that there be those importances in place to make 5 6 sure that the plan goes in the direction and water use in the 7 basin is the way you want it. Water markings approached in 8 isolation pose a risk of unintentionally incentivized and undesirable results. 9

For example, a shift in the pattern of water use that serves the interest of grants or profit seeking market participants but that undermine associate economic environment and other public interest goals.

A water market with relatively free trading must be bounded by carefully crafted regulatory controls and ensured that the water remains in the hands of the local communities and as always dependent on that availability. So, again, it's flexible, but watch out. You want to make sure that it moves in the direction that you want it to.

So speaking on that particular point, I want to talk a little bit about the character in Diamond Valley. One of the issues I think that arrived was although it may be an unintentional consequence of the water marketing approach employed in this particular plan, the plan appears to

44

JA1009

1 anticipate and facilitate conversion of water use away from 2 irrigated agriculture to other purposes, including mining, 3 despite the state's goal of preserving socioeconomic structure of Diamond Valley, which currently is based on an 4 5 irrigation and irrigated agriculture. The plan does not 6 include proactive measures designed to maintain irrigated 7 agriculture in the Diamond Valley and provides that nearly 8 allocations are freely transferable for any beneficial use 9 recognized under Nevada law. Without prior good measures, it 10 is designed to serve the state's goal of the plan, the 11 purpose -- the purpose of use and trade-in allocation will be 12 left to the market to determine.

13 If stakeholders and the State Engineer are 14 concerned about the implications of converting water use in 15 Diamond Valley away from irrigated agriculture, which appears 16 to have been a major concern here, and expressed limitation 17 in the plan on changes on the purpose and use of allocation 18 when purchased should be considered.

An example as given is the approach when you look at groundwater sustainability plan currently being implemented in Ventura County, California, which limits trades of existing agricultural ground rights among irrigators. So it's one example that they put on the plan. We think this is an important criterium. A

45

CAPITOL REPORTERS (775) 882-5322

SE ROA 697

1 couple of examples in terms of this movement away, for 2 example, look at the governance. And I think that has been 3 brought up already. The composition of the advisory board, 4 which plays a critical role in this process. To make 5 recommendations to the State Engineer regarding 6 administration of the groundwater management plan presents a 7 little bit of a concern to both agricultural users and the 8 interested public. Specifically, the advisory board does not 9 include position to represent environmental concerns or a 10 position to represent for overall public interest concerns, 11 including local community interest. So you may want to think 12 about the composition there a little bit.

Both of these positions should be considered by stakeholders as a means by which the social and economic character of Diamond Valley have a broader public interest might be protected under the groundwater management program.

17 Significantly, the plan seems to transition away 18 from agricultural value and composition over the first eight 19 years of its implementation. The result is to create five at 20 large positions which will be open to representation of any 21 type of user, whether it be mining, industrial, municipal, 22 commercial, agricultural, and so forth.

23 One apparent implication of this provision is 24 that the Groundwater Management Plan assumes a shift away

46

JA1011 SE ROA 698 from agricultural use in the Diamond Valley without an intention to provide any guarantee that the agricultural uses or interest will continue to prevail or have any control over the character of water in the Diamond Valley.

1

2

3

4

5 There is a substantial possibility, if not likely, that financially powerful interest could influence 6 7 and quickly require the majority of shares to the relatively free trading of water shares permitted on the plan and could 8 also use their voting power to skew the membership of the 9 10 advisory board in the direction that would be no longer 11 protective of the local irrigated agricultural or local 12 community priorities or public interest.

13 So, again, this can be avoided. These are just 14 some possibilities to think about in terms of how it could go 15 in the direction, what does the community really want to 16 have.

Stakeholders should consider how the 17 representation might be allocated differently. We talked 18 19 about that. Additionally, according to the plan, votes from 20 the election of the advisory board will be weighted according to the number of shares held by the voting rights holder. 21 Such a weighing will facilitate concentration of power to 22 control the advisory board membership and decisions in the 23 hands of one of the few dominant water shareholders. 24 Again,

47

JA1012 SE ROA 699 1 another potential risk.

A final concern around the governance is that there is a provision for a three-day period of notice on the advisory board meetings. And while that's the minimum required by law, it's probably not sufficient. The reviewer recommends at least a week for notification so that people have time to prepare.

8 Another point on the scope of the plan itself, 9 the decision to limit the scope of the groundwater -- limit 10 the scope to groundwater irrigation rights and mining rights, 11 the irrigation base means that mining rights, for example, 12 without irrigation base rights along with commercial rights 13 and municipal rights would otherwise be completely curtailed 14 under the strict priority administration, would not be 15 subject to significant reduction over time that are 16 incorporated in the plan. The effect of excluding these 17 junior water rights appears to be protecting them from 18 curtailment while subjecting water rights covered up by the 19 plan to progressively reduce water allocations over time. 20 This as a reviewer does seem to -- while excluding 21 non-irrigation water rights for specific circumstances in 22 Diamond Valley may serve a purpose, this limited approach 23 should not be taken as a general precedent of other groundwater basin management plans as a default starting 24

48

JA1013

point -- default starting point should be -- seek a
 comprehensive scope as possible.

3 And then another point that's connected to this 4 is the diminished State Engineer and public scrutiny and 5 review of changes and purpose of place. We did some 6 discussion of this already. But the Diamond Valley 7 Groundwater Management Plan approach to annual trading 8 allocation facilitates and thereby encourages temporary 9 transfers that may be repeated over many years, which in 10 effect may amount to permanent transfers. So under this 11 procedure of established by the plan, those temporary 12 transfers would be subject to a significantly reduced level 13 of scrutiny by the State Engineer and the concerned public as 14 compared with what would be required for openly permanent or 15 long-term transfer, including an exemption from a protest and 16 hearing process.

17 Stakeholders, you all should consider strongly 18 incorporating environmental consideration along with a 19 meaningful opportunity for public comment in to the review 20 process for all transfer applications likely to be repeated 21 or actually being repeated after the first year, in order to 22 ensure that adequate protections for the environment and 23 other aspects of the public interest are satisfied. 24 We do support -- We do think that the

49

CAPITOL REPORTERS (775) 882-5322

SE ROA 701

out-of-basin transfers should be limited. They're currently not in the plan. We think that's good. There is a provision to possibly change that in the future. But there might want to consider some constraints on how those transfers can occur and what can happen with them.

If a stakeholder is to prevent unwanted
out-of-basin transfers, it would be advisable to include
standards of the plan applicable to all transfers. So,
again, another component.

10 You know, in summary, it's important for 11 stakeholders and the State Engineer to consider revisions to 12 address potential unintended consequences of the plan. 13 Limiting the scope of the Groundwater Management Plan and its 14 pumping reductions to groundwater irrigation rights and 15 mining rights of the irrigation base and not including a 16 position on the advisory board to represent public interest, 17 including local community interest, environmental concerns, 18 built-in transition, built-in transition away from guaranteed 19 agricultural representation at large positions on the 20 advisory board that may be held by whatever division or 21 entity might purchase water for other uses in the plan, the 22 diminished State Engineer public review changes in purpose 23 and place of use that will result from encourage and trading 24 allocation on a temporary annual basin.

50

JA1015 SE ROA 702 Allocating -- Allowing the water -- Allowing the market to determine what dominant purchase of water exists in Diamond Valley. Failure to provide environmental protection in the census for environmentally-friendly uses and the potential for unbundling water from the land and create increased pressures for out-of-basin transfers.

Again, we appreciate all the energy that went in to creating this. And, again, from stepping back from the review that we had done, yes, this process can work but with additional constraints, requirements, to ensure that the character of your valley is preserved.

Again, there's a few copies of our report back there. If you're interested in downloading it off the website, you can go to gbrw.org/publications and you'll see it on that page. And thank you very much for your time and hospitality of Eureka and Diamond Valley.

HEARING OFFICER WILSON: We received a copy ofthe testimony of the report that you had.

19 D'Mark Mick.

20 MR. MICK: I'm D'Mark Mick, Diamond Valley Ranch. 21 D-apostrophe-M-a-r-k M-i-c-k. I'm an irrigator here in 22 Diamond Valley. We own and operate 19 pivots here in the 23 valley. We also represent about five percent of the senior 24 water rights here in the valley, if you were to take the

51

CAPITOL REPORTERS (775) 882-5322

SE ROA 703

1 30,000 acre-feet as the cut-off. So we're both a senior and 2 a junior water rights holder. And I guess we've been 3 involved in the process from early on. I have attended many 4 of the meetings. I won't say a majority, but a vast number 5 of the meetings throughout the process to go through the 6 development of the Groundwater Management Plan. And I 7 applaud the efforts of the group that have been put in at 8 every meeting by the advisory board that put in all the extra 9 time.

10 And I do want to come out and state that we are 11 in favor of the Groundwater Management Plan. We recognize 12 that as a senior water rights holder with enough water to 13 irrigate eight pivots after the full curtailment that we're 14 going to be impacted by this plan. But we also recognize 15 that the easy way out is to just accept curtailment as 16 quoting one statute that's in place and saying that we are 17 going to manage by seniority and curtail everybody below line 18 for which there apparently has been a science, although it's 19 been argued that whether or not the science is either valid 20 or in place. But there has been a line drawn in the sand. 21 And so the easy number is to pick that number and say 22 everybody above it gets to continue to irrigate. 23 The downside and the thing that seems to concern

us is that what's the impact on the community, the greater

24

52

CAPITOL REPORTERS (775) 882-5322

SE ROA 704

1	community, of not only the irrigators of which would be
2	impacted but by the people who voted for the bond for the
3	fire house, for the people who, you know, invest in Raine's
4	Market or for some of the other businesses here in place that
5	if you see an impact of two-thirds of your water rights users
6	disappear what is the ultimate impact on the greater
7	community of Eureka. And we're willing to take the hit as a
8	senior water rights holder in order to support the greater
9	good of the community.
10	So, like Mr. Benson, I would like to reserve the
11	right to submit additional comments in writing. But we want
12	to come out publically in support of the plan as presented.
13	Thank you.
14	HEARING OFFICER WILSON: Thank you, Mr. Mick.
15	Marty Blaskett.
16	MR. BLASKETT: Marty Blaskett, B-l-a-s-k-e-t-t.
17	I am Marty Blaskett, a life-long farmer in the Diamond
18	Valley. I support the implementation of the Groundwater
19	Management Plan a hundred percent because of the following
20	reasons: The plan was created and accepted by the majority
21	of those it will affect through many years of deliberation
22	and design input from the regulatory site plan management. A
23	local solution by locals with the State Engineer's oversight
24	to bring the basin in to balance and remove the critical

53

CAPITOL REPORTERS (775) 882-5322

JA1018 SE ROA 705 1 management area designation.

The pumping reduction schedule is based on water right seniority, favors ultimate water use efficiency, better management practices, and rewards water conservation with credits.

I have proven to myself on my own farm in the
last two years that it will not affect my yields and ability
to produce a quality product. Better efficiency and better
management, along with advances in farming in the coming
years, will offset the pumping reductions in my operation.

The plan was purposely designed to keep the community whole, allowing all users access to water and balancing the basin for ultimate health of the aquifer. The tax base is maintained and all the social economic units involved in the community are not disrupted by dwindling population that will occur with our alternative options, curtailment of pumping.

18 The plan is flexible in that it has set benchmark 19 reductions with yearly allocations adjusted through well 20 monitoring data, annual precipitation values, and 21 conservation relief.

Until a better solution rises, it is the mostlogical path toward basin water balance.

24

In closing, it is important to recognize and

54

CAPITOL REPORTERS (775) 882-5322

JA1019

SE ROA 706

appreciate all the hours in meetings, time traveling,
 arguing, and refining a solution to a problem that has been
 festering for 50 years at least.

4 Thank you, State Engineer staff, for your 5 involvement in plan structure and management. Thank you, 6 Eureka County, for allowing our resource manager to keep the 7 ball rolling, uphill, which is a gross understatement. Thank 8 you, Eureka County hydrology experts, for arming us with the 9 data to qualify, quantify our efforts. I would like to thank 10 all of my DNR PCA members, the GMP committee. The 11 conservation district has supported this greatly. Mining 12 partners that see the value in the plan support us. And 13 there is no I in this team dedicated to making Diamond Valley 14 sustainable. Thanks. 15 HEARING OFFICER WILSON: Thank you. And we did 16 receive the written comments of that statement. 17 Russell Conley. 18 MR. CONLEY: Hello. My name is Russell Conley, 19 C-o-n-l-e-y. I'm an irrigator in Diamond Valley and I'm 20 also --21 (The court reporter interrupts) 22 MR. CONLEY: I'm an irrigator in Diamond Valley 23 and I'm also a member of the advisory board that helped 24 develop this Groundwater Management Plan. As you know,

CAPITOL REPORTERS (775) 882-5322

JA1020

SE ROA 707

Diamond Valley is mostly comprised of family farming operations. We enjoy a rural way of life, good schools, strong community, and the ability to make a modest living on the ground we own. Our local climate enables us to produce very high quality hay and forage and good farmers have a chance to make a decent living for their families.

My family's operation, similar to others in the valley, we currently raise hay, cattle, and three children. The farming portion of our operation is completely reliant upon groundwater. And our water rights have been in effect since early 1961.

Even though these rights have been active over the last 57 years, they are still considered to be junior and would be amongst those curtailed if the State Engineer was forced to curtail based on priority.

As we avert, not all people agree with the development of the local Groundwater Management Plan. Some believe that the prior appropriation doctrine should be strictly adhered to. I believe that it is the failure to follow the documents from the beginning to allow allocation of this precious resource by over three times the perennial yield.

Now we are in a situation where people work hardto develop their land, raise their families, and establish

56

CAPITOL REPORTERS (775) 882-5322

SE ROA 708

1 The people in this basin have created great roots here. agricultural area that has grown to be a large part of the 2 3 community. Many of the irrigators in the basin have come together to develop this Groundwater Management Plan. 4 But 5 while the plan may not be perfect in everyone's eyes, most of 6 the irrigators agree that it is a workable solution that 7 would bring our basin back in to balance. In addition, it would enable most of the agricultural community to stay 8 9 intact. I believe that approving this Groundwater Management 10 Plan would be the best solution for the resource as well as 11 the community that relies so much upon it. Thank you very 12 much. 13 HEARING OFFICER WILSON: Thank you, Mr. Conley. 14 And I did receive a hard copy of the testimony. 15 James Moyle, come on up. 16 MR. MOYLE: My name is James Moyle. I'm a farmer 17 in Diamond Valley. My last name is spelled M-o-y-l-e. Ι 18 first of all would like you to know that I am in total 19 support of the plan. I have participated in the meetings 20 over the last two years. I think in excess of two years 21 we've been meeting. 22 My first exposure to a Groundwater Management 23 Plan was not two and a half years ago. It was when Mr. 24 Pete Goicoechea was first elected to the United States

57

CAPITOL REPORTERS (775) 882-5322

SE ROA 709

1 legislature. And when he come home for the recess in the 2 summertime, he approached me and asked me if I would be 3 willing to start a Groundwater Management Plan. I'm not 4 quite sure how many years ago that was, but it was quite a 5 few.

Given the nature of the valley and my past experience having lived here through the water wars of '77 and '78, I chose not to put that target on my back. But I decided once again to come and get involved in the water management plan.

11 As a participant in the process, I can tell all 12 of you who I consider newcomers to the issue, you are always 13 welcome. If you chose not to come, that's your idea how you 14 participate. But one of the things that was important for me 15 to say today is the plan was put together by the people who 16 had skin in the game. You have people who were going to lose 17 more than they wanted to, more than they thought they were 18 entitled to. And you also had people that they thought might 19 get something more than they were entitled to. But, after 20 all, we are only talking about whether all legal water 21 rights, junior or senior. And this plan was an intent to, 22 from my point of view, was to do nothing more than to 23 maintain the economy in this valley. That's been first and 24 foremost on every decision that ever came out of my vote over

58

CAPITOL REPORTERS (775) 882-5322

JA1023

SE ROA 710

1 the last two years. For those of you that may or may not 2 know, the State Engineer was vetted in the last two years at every meeting we had. I can tell you that to my knowledge I 3 think I only missed two of those meetings out of the year, 4 5 out of the two years. 6 So I can tell you I did not get everything I 7 wanted as a participant through the process, but I was 8 willing to sign off on it for the betterment of the valley.

9 So, once again, I thank the State Engineer for 10 initiating this. I thank him for having his representative 11 in the room for the past two years, so that we were not 12 stumbling around blindly. There was heated discussions on a 13 lot of the things. A lot of people left in tears. But they 14 came back. That was the important thing. Some didn't.

But I support the plan 100 percent and I want to thank the State Engineer and all the people that participated on a regular basis. Thank you.

HEARING OFFICER WILSON: Thank you, Mr. Moyle.
Mark Moyle.

20 MR. MOYLE: Hello, everybody. My name is Mark 21 Moyle, M-o-y-l-e. I'm here representing Mark Moyle Farms. 22 I've been a farmer here in Diamond Valley for 35 years. I'm 23 also representing DNRPCA, which is Diamond Natural Resources 24 Protective Conservation Association.

CAPITOL REPORTERS (775) 882-5322

JA1024 SE ROA 711 I'd like to take a moment and thank the many people that have worked so hard for so long to develop and create the Diamond Valley plan. We've been fortunate enough to have so many talented individuals working on this, the first of its kind, Groundwater Management Plan in the State of Nevada.

7 It is very important to keep in mind that the 8 Diamond Valley Groundwater Management Plan was developed 9 specifically for Diamond Valley. As we've seen today, 10 there's been a lot of outside interest and concerns outside 11 of Diamond Valley. What will be the future? And that's why 12 I say that. How it will affect other people in the state.

13 Diamond Valley has its own unique circumstances 14 and conditions that this Groundwater Management Plan has been 15 designed for. It is not intended to deal with other areas of 16 the State and their challenges. Because this plan is the 17 first of its kind in Nevada, there will no doubt be concerns 18 about how this plan might impact the rest of the state. I am 19 sure that there will be more plans developed in the future 20 that may adopt some of the futures of this plan, but the 21 future plans will have to deal with different conditions and 22 situations.

It is my concern that the interest outside of
Diamond Valley, fearful of the unknown, may try to interfere

60

SE ROA 712

with what has been developed for this unique area by the
 people who live here.

We do welcome outside constructive criticism and input as long as its intention is for making the plan better for its intended purpose here.

6 There have been hundreds of hours of meetings and 7 discussions as well as intense debates that have gone in to 8 the development of this plan. There have been a lot of 9 compromises and consideration given to the many issues that 10 this plan needs to address. The goal has always been to get 11 consensus on the issues at hand. We did not always get 12 consensus, but we did get the majority to agree before we 13 moved on.

The goal and development of the groundwater --The goal in the development of the Groundwater Management Plan is to reduce groundwater pumping in a manner that will do the least damage to the water users directly, the local economy, the environment in regards to weed and rodent problems and return the groundwater resource back to a sustainable level.

The Diamond Valley Groundwater Management Plan is not perfect in every way. It comes at cost to all irrigators who will cut their pumping by 30 percent in the first ten years that this plan is implemented. The irrigators that

SE ROA 713

support this plan understand that and we all need to
 sacrifice for the long-term benefit of the community and the
 long-term continued success of the farming industry in
 Diamond Valley.

Diamond Valley is the heart of the southern
Eureka County's economy. Few irrigators who are not in favor
of this plan are not so concerned about the whole economy.
They're only concerned about themselves.

9 The implementation will come at a cost to so 10 many, that it is understandable that there will be people who 11 will not support it. Strong, willing, giving people who 12 understand that it takes community effort to sustain and 13 survive built Diamond Valley. It took a huge group effort to 14 get the electric power that everybody enjoys in Diamond 15 Valley right now, even those that aren't in favor. It took a 16 huge group effort to work on the power cost to increase 17 challenges that occurred in the eighties. It took a group 18 effort to develop weed and gopher control to deal with those 19 problems. It took a group effort to get the roads paved in 20 Diamond Valley. It took the same group effort to develop the 21 Diamond Valley Groundwater Management Plan.

The purpose of the Groundwater Management Plan is to continue the ongoing success of the entire southern Eureka County area and all of the enterprises that exist there.

SE ROA 714

The long-term residents of Diamond Valley have endured a lot of challenges in the past and have worked together to solve it. I am confident in the resilience of the people who have made a living here. I would encourage them to be aware of some residents who have demonstrated by their actions or intent to only take from this community.

7 There are only two options: Strict curtailment 8 by priority or adopting the Groundwater Management Plan. The 9 Groundwater Management Plan is the best solution to an 10 extremely difficult situation that was created by actions and 11 conditions in the past. It is an extremely proactive 12 solution created by the people who are the most impacted. 13 The Diamond Valley Groundwater Management Plan has been 14 developed with input and participation from the agency 15 responsible for its implementation, the Nevada Division of 16 Water Resources.

I'm extremely grateful for all of those who have worked and participated in developing this plan. It is now time to put the plan in to effect so we can ensure that the water resource that we all depend on will be preserved in the future.

That's what I have written. I want to add a few other things based on a few other statements if that's all right.

CAPITOL REPORTERS (775) 882-5322

HEARING OFFICER WILSON: It's your comment. Go ahead. MR. MOYLE: Some of the other people that got up and spoke, I really have to take -- I wonder where they got

5 their information. Obviously they didn't read it or they 6 haven't got -- they got bits and pieces of the plan. But you 7 can come in to a meeting like this and you can skew little 8 bits and pieces of things that you read or you want to make a 9 stand on to make it sound like that what it really is is 10 something different and I take offense to that.

11 You're entitled to your opinion, but when you get 12 up in front of people and make accusations that basically are 13 not true or you weren't involved in the process, you don't 14 maybe know, maybe don't understand.

This plan was designed to meet the perennial yield based on not a model but based on what the perennial yield estimates are. It is not a mitigation rights plan. It is not the groundwater mitigation rights plan. It is the Groundwater Management Plan. Mitigation rights are up to the State Engineer to deal with, not the plan.

I've heard that it violates other provisions of water law. This plan was developed under the provisions of Nevada water law. Water law says that if you have a critical management area there's a time period to develop a water

JA1029

SE ROA 716

1 management plan to deal with that. That's exactly what we've 2 done. 3 It doesn't need -- I've heard that this plan will not have the end goal of getting the CMA designation in the 4 5 It absolutely does. end. 6 It's my hope that these outside influences will 7 not be a major factor in the plan that has been developed in 8 this area. It's been developed by the people who live here 9 and will be most affected and everybody sacrifices. 10 I would like to reserve the option to turn in 11 some more written comment by Friday. You've got my written 12 response so far. And thank you. 13 HEARING OFFICER WILSON: Thank you, Mr. Moyle. 14 Yes, we have received the written portion. 15 We're going to take a five-minute break and 16 resume the public comments. So only about five minutes and 17 give everybody a chance to stretch. 18 (Recess was taken) 19 HEARING OFFICER WILSON: Let's go back on the 20 We will continue with public comment. Bob Burnham. record. 21 MR. BURNHAM: Mr. King and staff, thank you for 22 your contribution to this process. My name Bob Burnham, and 23 that's B-u-r-n-h-a-m. 24 I'd like to take this opportunity to support the

65

JA1030

SE ROA 717

implementation of the Diamond Valley Groundwater Management Plan. I and many others have worked very hard to develop this proposal, which implemented can ensure a successful and prosperous future for the local agricultural community as well as be an example for the State of Nevada and indeed the western US of what is possible for maximizing the agricultural potential of finite water supplies.

8 In the last year I have sold my family farm after 9 living here for 42 years. My father first invested in 10 Diamond Valley nearly 60 years ago. Although I no longer 11 have a financial stake in the valley, I care deeply about the 12 future of this community and its agricultural base. This 13 process was the right thing to do when we started it seven 14 years and it is still the right thing to do.

Through genetics, improved genetics, changing property patterns, and new technology, we can become increasingly and continuously more efficient. In other words, the status quo is not the future as far as what is possible with water use.

And I'd like to thank the Division of Water Resources for participating in this process and making your staff available and vetting what we did. Thank you very much.

24

The GMP is an opportunity for this state, the

JA1031

1 driest in the nation, to be at the forefront of resource conservation and to show what is possible for modern 2 3 agriculture in terms of efficiency and water management. The 4 days of needing an acre-foot of water to grow a ton of hay --5 (The court reporter interrupts) 6 The days of needing an acre-foot of MR. BURNHAM: 7 water to grow a ton of hay are a thing of the past and we all 8 need to move forward to a more productive future. 9 I, like many others here, have dedicated our 10 lives to making this valley an economic success and a 11 cornerstone of this community for more than half a century. 12 This GMP program is the best way to ensure that the success 13 story continues for many generations to come. If decades 14 from now the children and grandchildren of the families that 15 bought my farm are still farming, that will be a wonderful 16 legacy, not just for me but for the community, the Division 17 of Water Resources, and the State of Nevada. The GMP is the 18 single best tool to preserve that legacy and indeed the 19 legacy of all of those that have worked so hard to build this 20 community. 21 It is also an opportunity to make Nevada a leader 22 in preserving irrigated agriculture in the west. 23 And I too would like to reserve the opportunity 24 to provide some more written comment. Thank you very much.

CAPITOL REPORTERS (775) 882-5322

JA1032

SE ROA 719

1 HEARING OFFICER WILSON: Thank you, Mr. Burnham. 2 We did receive a copy of your written letter. 3 Jim Gallagher, if you would like to come up. 4 MR. GALLAGHER: Good morning. Jim Gallagher, 5 G-a-l-l-a-g-h-e-r. It depends on where you draw the line, but I think my farm is senior and I'm very much in favor of 6 7 the plan and I worked on the plan for the three years it took 8 us to develop it. 9 We worked hard in the last three, four years, my 10 kids and myself, to learn how to irrigate. We have got by by 11 using two foot or less to grow a full crop in each of the 12 last three years. And I think by learning how to irrigate 13 instead of run water, the valley can survive and will 14 survive. I think if we do not have the plan and we have to 15 go to curtailment and there's only 50 or 60 circles left in 16 production, they won't last very long because the weeds and 17 the rodents will take them over. I think under the plan 18 there will probably be still 170 or 180 circles in production 19 out of the 200 at the end of the time of the plan. But I 20 think everybody is going to have to learn to irrigate, work 21 together. But the plan will work and I think we can all do 22 that. 23 I've heard people talk about exporting the water

24

under the plan. There's no inter-basin transfers and they

JA1033

1 said it's easy enough just to amend it. Well, that's bull. 2 Because you'll have to recreate the plan, get all the 3 petitions signed again, go through this hearing again. It's 4 not an easy deal. So the water will stay in the valley. The 5 advisory board balance, if you can't export the water, why 6 would somebody buy it to keep it here? 7 So the people in charge of the water will be the 8 farmers. And so we will be in charge of it. And so -- But 9 thank you guys for coming and I think the plan needs to be 10 passed. 11 HEARING OFFICER WILSON: Thank you. 12 Dan Venturacci. 13 MR. VENTURACCI: My name is Daniel Venturacci. 14 The last name is V-e-n-t-u-r-a-c-c-i. I'll give you these. 15 My wife and I own the Thompson Ranch located on the north end 16 of Diamond Valley. Our ranch consists of the deeded acres at 17 the home ranch, the Cox Ranch, the willow field, the rock 18 field, the box springs, and mountain base at Davis Canyon. 19 In addition, we also have a Diamond Springs grazing permit 20 which surrounds the city. 21 Due to the over-allocation of the pumping that 22 has been allowed to continue to occur in Diamond Valley, all 23 of the vested surface water, irrigated and sub-irrigated 24 meadows located on the valley floor of the Thompson Ranch

JA1034

SE ROA 721

1 have been destroyed. The Thompson Ranch has been begging the 2 State Engineer for help to restore its impaired vested water 3 rights since 1982. The State Engineer has continued to let 4 the over-pumping and para vested rights surface water rights 5 on the ranch as well as others in Diamond Valley. The 6 current proposed Diamond Valley Groundwater Management Plan 7 allows junior water rights holders to continue to pump in 8 excess of the perennial yield, which in turn drops the water 9 table and continues to impair vested surface water rights.

10 Not only has the over allocation of Diamond 11 Valley caused us to lose our vested surface water on the 12 valley floor, our vested mountain runoff water is also being 13 impaired. The over-pumping -- The over-pumping has resulted 14 in the subsidence of the valley floor, which has created 15 large fissures. These fissures prevent the vested mountain 16 runoff water from reaching the existing meadow, therefore 17 impairing our vested rights even more.

18 If you flip through the papers, you can see the 19 pictures that I've provided with GPS coordinates. And the 20 GPS coordinates in the pictures are just a couple that I got 21 for evidence. There is fissures throughout the north end of 22 the valley on all the ranches in the valley floor.

As long as the over-pumping is allowed to continue, these fissures will continue to increase both in

70

SE ROA 722

number and size, causing us financial harm, as we will -- as well as impairing our vested rights. We feel that the GMP is in violation of statute NRS 533.085, which states nothing contained in this chapter shall impair vested rights. Due to the fact that vested -- Due to the fact that vested surface water rights are continuing to be

6 that vested surface water rights are continuing to be 7 impaired and no mitigation plan is addressed in this GMP, we 8 will not support the GMP. We feel that before the GMP is 9 signed by you, Mr. King, our concerns need to be addressed 10 and result immediately so that we -- I'm nervous -- so that 11 our vested surface water rights do not continue to be 12 impaired. Thanks.

HEARING OFFICER WILSON: Thank you, Mr. Venturacci. For the record, Mr. Venturacci handed the copy of the letter which he was reading in to the record and the pictures which he referenced in his statements.

Carolyn Bailey.

17

MS. BAILEY: Hello. I'm Carolyn Bailey. And I wanted to reiterate the fact that the meetings were very intense and mention that I did not feel welcome at them so I didn't attend very many of them.

I'm representing the Bailey Ranch today. And the
Bailey Ranch has been in operation in Diamond Valley since
1863. Current laws protect the viability of our heritage.

71

CAPITOL REPORTERS (775) 882-5322

SE ROA 723

When laws were not enforced, our ranch was harmed by the drawdown of the water table. The water table that naturally flows from springs was devastated. The springs, ponds, meadows, and forests that our family, livestock, wildlife and plant communities relied on was severely affected. We were left to mitigate this damage at an extensive expense that goes beyond our pocketbook.

8 We support efforts to create a Groundwater 9 Management Plan that is environmentally sound and would not 10 further injure our ranch vested water rights and help the 11 agricultural sector. The only water rights included in the 12 GMP are agricultural water rights. The GMP needs more than a 13 modest revision.

The way the plan has been proposed has had a chilling effect on the Bailey family and those with whom it would be applied. The option given was to sign on to this plan or be curtailed.

One agreement between Eureka Moly and Eureka Producers Co-op, dated August 18th, 2010, required Eureka Producers Co-op not to participate in any manner directly or indirectly to interfere with Eureka Moly's plans to secure water and place Mount Hope in to operation and further to persuade any other protestants to settle any appeals to water requirements. A settlement between Eureka County, Diamond

72

CAPITOL REPORTERS (775) 882-5322

SE ROA 724

1 Valley, Resource -- Natural Resources Protection and 2 Conservation Association and Moly Mine dated September 12th, 3 2018, states that Moly shall not assist any party financially 4 or otherwise that opposes or is adversarial to approval or 5 implementation of the GMP. These and other settlements with 6 individual ranchers and farmers have interfered with the 7 ability of stakeholders to speak out. This plan could 8 profoundly change the demographics of Diamond Valley and in 9 effect do the opposite of what the stated goals of the plan 10 represent.

Walker and Associates, including Michael Young, were hired to facilitate this process and are experts at changing demographics of natural resources for the benefits of their clients.

15 Issues regarding non-consumptive use 16 phreatophytes, transparency, board structure, and weighted 17 voting are some of our concerns. Giving shares to abandon 18 water and banking shares adds to the future demand on the 19 aquifer. Water bank balances could quickly exceed available 20 resources. There is no contingency plan for large 21 withdrawals in the future. Out-of-basin transfers would not 22 help our basin's sustainability. Vested and mitigation water 23 should be managed under NRS 533 laws.

24

Baileys have seven generations on the Bailey

73

CAPITOL REPORTERS (775) 882-5322

SE ROA 725

1 Ranch in a century and a half of continuous operation. This 2 represents a century prior to the farms considered for 3 management under the GMP plan. The Bailey family also owns 4 farms in Diamond Valley and we recognize the need for and do 5 not oppose implementation of a GMP plan that would protect 6 agriculture for future generations. The Bailey Ranch asks 7 for the State Engineer to revise the GMP or consider 8 alternatives. 9 HEARING OFFICER WILSON: Thank you. And we did 10 receive the written copies you were speaking to just now. 11 Patrick Rogers. 12 MR. ROGERS: My name is Patrick Rogers. I'm the 13 vice president of permitted and environmental compliance for 14 General Moly. I've been working in this community to develop 15 the world class Mount Hope Mine for going on 12 years. Hope 16 to continue that and continue to support the community in 17 addressing important issues such as the sustainability of the 18 Diamond Valley aquifer. 19 I represent General Moly and Hobie Valley 20 Ranches. We support the Diamond Valley Groundwater 21 Management Plan and we support its acceptance by the State 22 Engineer. 23 HEARING OFFICER WILSON: Thank you, Mr. Rogers.

Vicki Buchanan.

24

74

JA1039

MS. BUCHANAN: My name is Vicki Buchanan for the record, B-u-c-h-a-n-a-n. First of all, I would like to thank our current State Engineer and his staff for all the headaches and input that they had putting in -- coming in to this.

6 The whole problem, there's not a person in this 7 room that has a water right that's doing anything illegal. Every single water right that's issued, whether you're junior 8 or senior or anything else, they're not pumping any more 9 10 water than they're allowed to by law currently. And my 11 family -- I guess I should go back. My family is one of only 12 two or three original desert land proprietors left in the 13 valley. And water law -- water law is not set in stone. It 14 is for right now. But when we originally filed on the water 15 rights in Diamond Valley, we had to prove beneficial use on 16 those water rights. And it was our understanding at that 17 time that if we proved beneficial use on that water right 18 that that was our water right. And I'm not positive of the 19 year that it happened.

But Roland Westergard, one of the prior State Engineers, came out here to a Conservation District meeting. And it's when the, we'll just call it the use or lose it clause came in to effect. And he sat there and Chuck was here, Birdie was probably here. My mom was here. And he

75

JA1040

1 said this law isn't supposed to affect Diamond Valley. It's 2 not going to affect the people that are sitting here in this 3 room. It's just for people that are speculating. It's to 4 protect the water rights around Las Vegas. It's not ever 5 going to affect Diamond Valley. Well, it sure did. But that 6 was a change in water law.

7 A change isn't something that any of us come by 8 easily. It's just like Chuck said, you know, when it came 9 time to get power in this valley, Don Nelson, Chuck, my dad 10 went around and they had to knock on doors to get power. 11 They passed a petition and only by one signature, one 12 signature, they got enough people to sign on to this petition 13 to get power in our valley. And it's true that if we didn't 14 have power we probably wouldn't be sitting here today because 15 we would all be broke and gone.

16 But, anyway, what I'm getting at is that change 17 is scary and the Groundwater Management Plan is a deviation 18 from what we've always been doing. But what we've always 19 been doing, we've been fighting for 40 years that I know of, 20 and it's been ugly. And if this Groundwater Management Plan, 21 if we can come to an agreement on it and it's something that 22 we can all live with. No, it's not perfect. And I, with 23 having all senior water rights people ask me why -- why are 24 you in favor of it. Well, when it comes down to it, when I

76

JA1041

CAPITOL REPORTERS (775) 882-5322

SE ROA 728

put my pump in the hole and there's no water coming out, it doesn't matter what my water right says. If I'm tied to that piece of property, I can't -- I have no flexibility. And so what good is me to have a senior water right if all the junior water rights around me go away and I still don't have any water.

And I understand that there's a lot of litigation going on. There's adjudication process. There's the mitigation rights. And that stuff has been going on, not the adjudication, but the rest of it, pretty much my whole life.
And I have a feeling that it might go on through my son's life.

13 But this Groundwater Management Plan to me is a 14 positive step to reducing the pumping in Diamond Valley and 15 trying to keep as many people viable as possible. And it's 16 not -- You know, a lot of those juniors, there's some on the 17 very bottom that, I'm sorry, they are going to go away. 18 They're not going to be able to survive. But at least if 19 they can sell their rights to somebody else, if they can find 20 a different way to farm, if they can look at alternative 21 crops, if they can farm one pivot instead of three, give 22 themselves time to figure out a game plan to figure out what 23 they can do to stay efficient, you know, then that gives 24 them -- that gives them a chance. It gives them an option.

CAPITOL REPORTERS (775) 882-5322

77

SE ROA 729

It leaves the option in their hands, rather than the State Engineer coming in and saying, you know what, I'm sorry, but next summer you're not going to -- your farm is done. And, you know, like I said, there's nobody in here that has a water right that hasn't been issued a water right.

And, you know, like I said, I'm in favor of the, you know, the first in right, first in time. But when it should have been enforced was 40 years ago, you know. And it's, you know, the prior state water engineers -- There's not enough time to talk about all of the inequities that have been put on this valley through all the years through State Water Engineers. And present company excluded, Jason.

But the other thing that this Groundwater Management Plan will do is it will stop a lot of the nit-picking, the pettiness, the -- You know, it will start us with a clean slate and it's up to us where we go from there. So thank you for your time.

HEARING OFFICER WILSON: Thank you, Ms. Buchanan.
Matthew Morrison.

20 MR. MORRISON: Hi. Is this working? I would 21 like to --

22 (The court reporter interrupts)
23 HEARING OFFICER WILSON: Just so we have a
24 record -- Excuse me. So that we have it on the record could

78

JA1043

CAPITOL REPORTERS (775) 882-5322

SE ROA 730

1 you state your name and spell your name, please.

2 MR. MORRISON: Okay. My name is Matt Morrison, 3 M-a-t-t M-o-r-r-i-s-o-n. And first I would like to thank 4 people so I get that out of the way. I would like to thank 5 the water engineer's office and those people that came out 6 and helped us. Especially I want to thank all the people 7 that were on boards both on the water organizations. And I 8 especially wanted to thank Dale, who has been out measuring 9 wells. And most of all I want to thank Jake, who has really 10 sacrificed for us.

I'm kind of like one of the first people here in this valley. My mom and my dad, Birdie Morrison and Don Morrison, filed desert planting trees, and we first came out here in '59 and went back to Seattle. My dad used to work for Boyd Airplane Company in Seattle, Washington, without a college education or a high school diploma. He was quite a person and quite admired.

I remember coming out in this valley and it was sagebrush. I sat in that tractor with my mom going around in a square beating the brush out here to be a farmer, to raise our crop is what my dad always wanted to do.

And we never thought we would not be senior. But come to find out, we were one of the first ones here and we cleared the land, and she's, like, two weeks from being a

CAPITOL REPORTERS (775) 882-5322

1 senior.

I kind of left and went to college and joined the Navy and came back in 1970 because I loved this area and I wanted to be a part of it. And so I brought my wife out here in 1980 and bought a piece of ground and helped my dad farm and become a part of this community, which I love, and worked hard.

And now I find out that she's two weeks from being a senior. That on the place that I bought I'm a month away. And another place that I have that I bought first initially is pretty junior, but there is a little bit of rights on there that is a little older, but nothing senior.

So we have worked hard. We didn't have any money. We were poor. And we worked our way up. And my dad enabled me to buy property and enabled my brother also to buy property here in this valley. And the human side of it is that we have been here since the very beginning just about, and we're not senior. And we have our families and we have everything invested in this valley.

Now, if you'll go back that far, the junior rights, then you're going to see a tremendous amount of people leave this place. You're going to see a lot of pivots out there shut off. You're going to see -- You might see a lot of crescent weed planted. You might see -- You'll see

80

JA1045

CAPITOL REPORTERS (775) 882-5322

SE ROA 732

1 rodents come in. It won't be good for this area.

2 And I understand, you know, people who have 3 senior rights and I understand some people have junior and senior rights. But I also understand this community, this 4 has been allowed to go on. And I think we were the backbone 5 in this community. We were here before the mines were even 6 here. And we filled the schools and the school bus and 7 8 picked the kids up. And I would just like to see that 9 continue.

10 So, what I'm doing, we put meters on all of our 11 wells to try and get -- to make sure we know what we're 12 pumping, put drops on three of my pivots, and we're going to put drops on two more. We're going to try to -- We're 13 14 looking to put panels on so our pivots can shut off at 1:00 15 o'clock and maybe turn back on at four so they'll be off and 16 try to save water. And a lot of times I've been told the 17 conservation might save 20, 25 percent.

And another thing I admire in this plan is the ability to take water from one well and apply it to another well as long as you don't exceed what that well is supposed to pump. Because when your cut crops, you need to rotate, you need to clean up your fields. And if you have a field that you need take out and clean up, you don't need to use the water, you can use it somewhere else. Because as we

81

SE ROA 733

1 decrease these amounts on each pivot, there will be pivots 2 that will not have maybe quite enough water in the 3 foreseeable future to irrigate a crop. So you may be able to take one out and keep that. But at least keep the ground 4 5 viable, keep the rodents out, keep things going, and still be 6 able to make a living and still be able to pass your farm 7 down to your children that I have worked for all my life. I'm 69 years old. I don't think I'm going to be doing 8 9 anything else.

And another bad thing is going to be if we're forced to turn our water off, you know, a lot of us are indebted to banks to a certain extent on the properties. A lot of us have to get loans. And so all of a sudden if you are a farmer and you are productive and you are working with the banks and all of a sudden you see a human with bankruptcy coming possibly for a lot of people.

And so this plan is a plan to make everything work even from the lowest -- to the most non-senior to the senior. It's trying to design a plan that will work for everybody. If we could have made it work we would have been in favor of giving more to the seniors. But it took the plan that we created in order to keep everybody -- give everybody a chance.

24

So, again, I would just like to thank everybody

JA1047

SE ROA 734

and I'm for the management plan. I hope it goes through. 1 2 And thank you very much.

3 HEARING OFFICER WILSON: Thank you, Mr. Morrison. 4 At this time we went through everyone that 5 indicated they wanted to speak on the sign-in sheet. We've got a little bit more time. If there is anyone else who 6 7 wants to come up to the microphones, they can do so now.

8 UNIDENTIFIED SPEAKER: There's some more people 9 on the sheet. Sorry. There's a new sheet.

10 HEARING OFFICER WILSON: Thanks. We have one 11 more page on the sign-in sheet. So Dusty like would like to 12 speak as well. Dusty Moyle, go ahead and come up.

13 MS. MOYLE: Good afternoon. My name is Dusty 14 Moyle, M-o-y-l-e. I am a second generation farmer here in 15 Eureka, Nevada, and in the last ten years I've been 16 purchasing land and it's not been senior. It's been junior. 17 And I would just like to thank everybody who put this plan 18 together because I am in favor of it. And when you go and you're a business owner and you look at things that can help 19 20 people in the community move your business forward and the 21 community, you don't purchase land next to you that is a 22 senior water right holder and has never had any production on 23 it. And I had the opportunity to do that and didn't. 24

So this plan helps everybody move forward and I

1 am in support of it and I appreciate everybody's time who did 2 put this plan together. I know it was a lot of time. So 3 thank you. 4 HEARING OFFICER WILSON: Thank you, Ms. Moyle. 5 Is there anyone else who would like to speak? 6 MR. RIGDON: I would like to ask a couple of 7 process questions. 8 HEARING OFFICER WILSON: I'm sorry. There's 9 someone in the back. If you wanted to come up. When you get 10 to the mike, please identify yourself for the record and 11 spell your last name. 12 MR. MORRISON: Yes. My name is Lloyd Morrison. 13 I'm a farmer in Diamond Valley. And I believe that we 14 finally are trying to do something about the water. We've 15 talked about water for 40 years in this valley. We actually 16 have a plan that we can experiment with, see what we can do, 17 finally make a positive step towards conservation, even 18 though, you know, adding pivot irrigation and drops and 19 stuff, the farmers have reduced the amount of water that 20 could have been used on 160 versus 125 acres. We have done a 21 lot of conservation. 22 But this plan can help us start doing something 23 about a problem that we've all been aware of for a long time. And I am concerned that, you know, in the last 40 years there 24

84

JA1049

SE ROA 736

1 have been a lot of special interest groups that have moved in 2 to the area that actively work to try to stop this plan. I 3 think this plan should have a chance to be put on the ground 4 and put in to motion to see how it works so we can at least 5 do something, not start from the beginning and redo somebody 6 else's idea. We have a plan. Let's put it to work. 7 HEARING OFFICER WILSON: Thank you, Mr. Morrison. 8 Is there anyone else? Please come up to the 9 microphone. 10 MS. MORRISON: I know my voice does not carry 11 very well. I sound loud to me. Can you hear me? 12 THE STATE ENGINEER: If you'll hit the end of the 13 microphone. 14 MS. MORRISON: Can you hear me now? I don't 15 suppose I can --16 (The court reporter interrupts) 17 HEARING OFFICER WILSON: Could you please state 18 your name and spell your last name. 19 MS. MORRISON: My name is Alberta Morrison, 20 Mrs. Donald Morrison, M-o-r-r-i-s-o-n. My husband and I and 21 five little children came here in 1958. We found that we 22 were in the clutches of an unscrupulous promotor, so we had 23 to leave for two years in order to get money to come back and 24 continue working for our claim in Diamond Valley. We

JA1050

SE ROA 737

struggled for years. We came in 1960 and have lived here continually ever since.

3 My husband, while he was alive, had his farm. 4 Actually we developed some of the farms around us that do 5 have senior rights, but because we didn't have many behind 6 us, we had to do that work to earn money to prove up on our 7 land, which we did. But that caused us to be in two weeks 8 behind others that where the cut-off line is. But actually 9 on some of these lands around us that have senior rights I 10 drove the tractor to clean the land.

We struggled for years having no one to back us. We came as pioneers, to have it being the land. In fact, my husband worked for others in order for us to survive. We scraped and saved every way that we could. We were going by what the water engineer told us. And our water rights were secured and we farmed as carefully as we could all of these years.

Now, I don't know how this is going to come out.
We were always trying to save the water to conserve water,
where many others who continue to have senior rights were
watering the highway, which was against the rules, and things
like that.

Also, at that time, we were told that we had two years to develop our water and we could only have two -- I'm

86

JA1051

1 not sure about some facts. But I know that they told us that 2 we had only -- we could only get two extensions so that we 3 had to develop our water within that time or lose it. 4 Well, I find now that there are places in the 5 valley that have held their land by having extensions and not 6 only until last year did they develop their land and have the 7 senior water rights. I don't understand why they could get 8 extensions longer than we did. 9 Well, very complicated things have happened since 10 It was, as someone else had stated, no one did wrong. then. 11 We all thought we did everything we could and we developed 12 our land and thought we had water. But here we are now and I 13 don't know how this is going to come out. 14 But there's another point that I am really 15 concerned about. If we have to stop farming, we're going to 16 have to leave our houses empty and stuff there, people won't 17 be able to carefully transition from what we're doing to 18 something else. But many have other jobs too and have maybe 19 reached retirement age, not counting what Matt mentioned 20 about people that have bank loans. Not everyone is 21 debt-free. It would be very bad on this community. So 22 bankruptcies, that will happen. 23 And the other thing is, you know, we could live

Some people, as you know, work in town. Many people

24

here.

87

JA1052

SE ROA 739

1 have retirements that they could retire on, except for one 2 fact. To live on our farms you have to have some domestic 3 water. The domestic wells were to be curtailed too. And I 4 don't know when this became a law, back in pioneer times, 5 which I was based on my grandfather, in the Cherokee script. 6 In fact \$200 I inherited from him went down on a lease on 7 this land. 8 But it seems that our domestic rights are 9 connected with the other rights. You would have no water. 10 You couldn't retire on your farm because you've got to have 11 water for everything. You have to take a bath and shower or 12 water your cats.

13I would suggest that everyone talk to your14legislators when you get a chance, talk to your15commissioners, talk to everyone you can and try to get it16passed that our domestic rights are exempt from curtailment.17But please do that, try to speak --18(The court reporter interrupts)19MS. MORRISON: Can you hear me? Try to speak to

20 the legislators. That's one way to get things done.

I really also want to thank those that worked so hard on this plan and I'm really hopeful. Thank you very much.

24

HEARING OFFICER WILSON: Thank you, Ms. Morrison.

JA1053

SE ROA 740

1 Anyone else want to provide comment? I believe 2 we had a question. Mr. Rigdon, if you would like to come up 3 to the microphone and address it. 4 MR. RIGDON: Just two real quick process 5 questions. A lot of written material was submitted today. 6 When will that be available for inspection and copy? 7 MS. GEDDES: As soon as tomorrow when we get back 8 to the office we can make that available. 9 MR. RIGDON: And then the second question is 10 similar with the transcript, when would that be available for 11 inspection? 12 MS. GEDDES: Two weeks. 13 HEARING OFFICER WILSON: Okay. If there's no 14 other comments here, I wanted to thank everyone for attending 15 and providing their input. And I will remind everyone here 16 as well that we will accept written comment by close of 17 business this Friday, the 2nd of November. 18 With nothing further, this hearing is declared 19 closed and submitted to the State Engineer. Thank you. 20 (Hearing concluded at 12:45 p.m.) 21 22 23 24

89

JA1054

SE ROA 741

1	STATE OF NEVADA
2)ss. County of Washoe)
3	
4	I, CHRISTY Y. JOYCE, Official Certified Court
5	Reporter for the State of Nevada, Department of Conservation
6	and Natural Resources, Division of Water Resources, do hereby
7	certify:
8	That on Tuesday, the 30th day of October,
9	2018, I was present at the Eureka Opera House, Eureka,
10	Nevada, for the purpose of reporting in verbatim stenotype
11	notes the within-entitled public hearing;
12	That the foregoing transcript, consisting of
13	pages 1 through 89, inclusive, includes a full, true and
14	correct transcription of my stenotype notes of said public
15	hearing.
16	·
17	Dated at Reno, Nevada, this 8th day of
18	November, 2018.
19	
20	
21	Conce
22	CHRISTY Y. JOYCE, CCR #625
23	
24	

90

JA1055

SE ROA 742

Prepared in cooperation with Eureka County, Nevada

Budgets and Chemical Characterization of Groundwater for the Diamond Valley Flow System, Central Nevada, 2011–12

Scientific Investigations Report 2016–5055

U.S. Department of the Interior U.S. Geological Survey

Cover photographs

Upper left

Southern Monitor Valley looking northwest toward the Toquima Range. Valley floor vegetation is composed primarily of phreatophytic greasewood (*Sarcobatus vermiculatus*) and rabbitbrush (*Chrysothamnus spp.*).

Upper right

Monitor Valley looking southwest over the Monitor Valley playa toward the Toquima Range. Low-growing vegetation on the playa margins is saltgrass (*Distichlis spicata*).

Bottom

Diamond Valley looking northwest toward a dust plume from the Diamond Valley playa. Foreground vegetation is composed primarily of sagebrush (Artemisia tridentata) and rabbitbrush (*Chrysothamnus spp.*)

Background

Antelope valley looking north toward Lone Mountain (central, foreground), Roberts Mountains (left).

All photographs by Susan G. Buto

JA1057 SE ROA 744

Budgets and Chemical Characterization of Groundwater for the Diamond Valley Flow System, Central Nevada, 2011–12

By David L. Berger, C. Justin Mayers, C. Amanda Garcia, Susan G. Buto, and Jena M. Huntington

Prepared in cooperation with Eureka County, Nevada

Scientific Investigations Report 2016–5055

U.S. Department of the Interior U.S. Geological Survey

JA1058 SE ROA 745

U.S. Department of the Interior

SALLY JEWELL, Secretary

U.S. Geological Survey

Suzette M. Kimball, Director

U.S. Geological Survey, Reston, Virginia: 2016

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit *http://www.usgs.gov* or call 1–888–ASK–USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit *http://store.usgs.gov*.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Berger, D.L., Mayers, C.J., Garcia, C.A., Buto, S.G., and Huntington, J.M., 2016, Budgets and chemical characterization of groundwater for the Diamond Valley flow system, central Nevada, 2011–12: U.S. Geological Survey Scientific Investigations Report 2016–5055, 83 p., http://dx.doi.org/10.3133/sir20165055.

ISSN 2328-0328 (online)

JA1059 SE ROA 746

Acknowledgments

The authors thank the private landowners who allowed access to their wells for water-level measurements and the collection of water-chemistry data. The authors gratefully thank Eureka, Lander, and Nye Counties; the Nevada Department of Water Resources; and General Moly, Inc. Particular thanks go to the Eureka County Commissioners and staff for their help, patience, and knowledge.

Contents

Abstract	1
Introduction	2
Purpose and Scope	2
Description of Study Area	2
Previous Hydrologic Studies	2
Hydrologic Setting	4
Climate	6
Surface Water	10
Groundwater	11
Chemical Characterization of Groundwater	28
Major-Ion Chemistry	28
Stable Isotopes	29
Estimation of Groundwater-Budget Components	44
Groundwater Discharge	44
Evapotranspiration	44
Surface Energy Budget	44
Site Selection and Characteristics	
Instrumentation	48
Data Correction and Processing	50
Turbulent Fluxes	50
Available Energy	
Energy-Balance Ratio	51
Precipitation	52
Source-Area Measurements	
Site-Level Groundwater Evapotranspiration	
Scaling Groundwater Evapotranspiration from Site to Basin Level	
Satellite Imagery and Vegetation Indexes	
Groundwater Discharge Area	
Characterization of the Pre-development Landscape	
Evapotranspiration Unit Delineation	
Estimation of Pre-development Groundwater Evapotranspiration	
Groundwater Evapotranspiration Uncertainty	
Groundwater Withdrawals	
Groundwater Recharge	
Subsurface Flow	
Change in Groundwater Storage	
Groundwater Budgets	
Pre-development	
Recent (2011–12)	
Limitations of Methodology	
Summary	
References Cited	
JA	1061

Appendix 1: Description of Spatial Datasets	.81
Water-Level Altitude Contours for the Diamond Valley Flow System, Central Nevada, 2012	81
Irrigated Agricultural Lands and Associated Land Disturbance in the Diamond Valley Flow System, Central Nevada, 2011	81
Groundwater Discharge Area for the Diamond Valley Flow System, Central Nevada	.81
Summer Mean Enhanced Vegetation Index for the Diamond Valley Flow System Groundwater Discharge Area, 2010	81
Evapotranspiration Units for the Diamond Valley Flow System, Central Nevada, 2010	.81
References Cited	.82
Appendix 2: Water-Quality Data	.83
Quality Assurance	.83
References Cited	.83

Plate

Groundwater Levels in Basin-Fill Deposits, Groundwater Discharge Areas, and Agricultural Areas of the Diamond Valley Flow System, Central Nevada. The plate can be found at http://dx.doi.org/10.3133/sir20165055.

Figures

1.	Map showing hydrographic areas and selected geographic features in the Diamond Valley flow system, central Nevada	3
2.	Map showing atmospheric sites, surface-water sites, and spring sites in the Diamond Valley flow system, central Nevada	5
3.	Graphs showing comparison between average annual precipitation for four long- term precipitation stations, Diamond Valley flow system, central Nevada, and <i>A</i> , station altitude, and <i>B</i> , PRISM derived precipitation	8
4.	Graph showing annual water year precipitation and cumulative departure from normal, Eureka, central Nevada	9
5.	Maps showing groundwater sites in <i>A</i> , the Diamond Valley flow system, central Nevada; <i>B</i> , parts of northern Monitor and Kobeh Valleys; <i>C</i> , parts of Kobeh and Diamond Valleys	12
6.	Hydrographs showing water-level change in selected wells in the Diamond Valley flow system, central Nevada, 1950–2012	16
7.	Graph showing miscellaneous spring-discharge measurements for Shipley Hot Springs and Taft-Thompson Spring, 1965–2012, Diamond Valley flow system, central Nevada	17
8.	Map showing geology, groundwater-level contours, and sites sampled for groundwater chemistry and chemical typing, Diamond Valley flow system and adjacent basins, central Nevada, 1954–2012	30
9.	Piper plots characterizing the chemical type of groundwater in the Diamond Valley flow system, central Nevada	31
10.	Graph showing relation between oxygen-18 and deuterium for precipitation, groundwater, and spring water samples, Diamond Valley flow system and adjacent valleys, central Nevada	32

11.	Photographs showing evapotranspiration sites, Kobeh Valley, central Nevada photographed <i>A</i> , laterally to show instrumentation and vegetation at sites 1–4, and, <i>B</i> , aerially from a location approximately 328 feet west of sites 1–3 to show vegetation distribution in an approximately 28-foot square footprint
12.	Graphs showing continuously measured precipitation and near-surface volumetric soil-water content at evapotranspiration sites, October 2010 through September 2012, central Nevada
13.	Hydrographs from wells collocated with evapotranspiration sites, Kobeh Valley, central Nevada; sites 130, 150, 142, and 143 were collocated with sites 1–4, respectively
14.	Graphs showing source-area contributions to turbulent fluxes with distance from site 2, Kobeh Valley, Nevada: <i>A</i> , cumulative and <i>B</i> , relative measured
15.	Graphs showing daily energy-balance corrected evapotranspiration and precip- itation at four evapotranspiration (ET) sites and the computed potential ET at site 4, October 2010 through September 2012, Kobeh Valley, central Nevada
16.	Map showing groundwater discharge area, evapotranspiration units, and variation in the scaled summer-mean 2010 Enhanced Vegetation Index, Diamond Valley flow System, central Nevada
17.	Maps showing previous groundwater discharge-area delineations compared with 2011 delineations, Diamond Valley flow system, central Nevada
18.	Graphs showing relations between 2011–12 groundwater evapotranspiration and the scaled Enhanced Vegetation Index for shrubland and grassland evapotrans- piration units for the summer-mean 2010 image, Kobeh Valley, central Nevada
19.	Graph showing mean annual basin-scale groundwater discharge from and total area of shrubland, grassland, and playa evapotranspiration units, Diamond Valley flow System, central Nevada
20.	Graphs showing basin-specific comparisons of average annual PRISM precipitation for 1981–2010 in vegetated ET units, area-weighted average groundwater evapo- transpiration (ET) for shrubland ET units, and average scaled enhanced vegetation index for shrubland ET units for the 2010 summer-mean image, Diamond Valley flow system, central Nevada
21.	Graph showing estimated net groundwater withdrawals from pumping, pre-develop- ment natural discharge, and irrigated-acreage for 1950–2012 in Diamond Valley, central Nevada

Tables

1.	Location and general description of atmospheric measurement sites, Diamond Valley flow system, central Nevada	6
2.	Measured precipitation data at four evapotranspiration sites in Kobeh Valley, seven climate stations near the Diamond Valley flow system, and Parameter-elevation Regressions on Independent Slopes Model (PRISM) estimates, central Nevada	7
3.	Location and general information of surface-water measurement sites, Diamond Valley flow system, central Nevada	10
4.	Location and general information of spring-measurement sites, Diamond Valley flow system, central Nevada	15
5.	Location and general information for groundwater-measurement sites, Diamond Valley flow system, central Nevada	18
6.	Selected water-chemistry data, Diamond Valley flow system and adjacent basins, central Nevada, 1954–2013	34
	JA106	5

7.	Specific conductance, sodium, chloride, and total dissolved-solids concentrations from selected sites along northerly flowpath in southern Diamond Valley, central Nevada, 1965–67	43
8.	Vegetation type, canopy cover, and height measured at four evapotranspiration sites, May 2012, Kobeh Valley, Nevada	45
9.	Above-ground sensor heights, in feet, at four evapotranspiration stations, Kobeh Valley, Nevada	50
10.	Energy-balance ratio, slope and coefficient of determination from ordinary least squares regressions comparing turbulent flux and available energy measurements, and percent good half-hour and daily data at four evapo- transpiration sites, Kobeh Valley, Nevada	51
11.	Annual mean wind speed measured at two heights, liquid fraction of total precip- itation, and measured and corrected precipitation at four evapotranspiration sites, Kobeh Valley, Nevada, 2011 and 2012	52
12.	Measured annual precipitation, energy-balance evapotranspiration, soil-water storage change, groundwater evapotranspiration and associated uncertain- ties at four evapotranspiration sites, Kobeh Valley, central Nevada, 2011–12	53
13.	Landsat 5 Thematic Mapper scenes evaluated for use in basin-scale estimation of groundwater evapotranspiration, Diamond Valley flow system, central Nevada	56
14.	Coefficients of determination describing relations between vegetation indices and site-scale groundwater evapotranspiration, Kobeh Valley, Nevada	57
15.	Groundwater discharge areas by vegetation type and groundwater-evapotranspi- ration rates from previous investigations and this study, Diamond Valley flow system, central Nevada	
16.	Mean annual basin-scale groundwater evapotranspiration (ET) and ET unit area, Diamond Valley flow system, central Nevada	
17.	Estimated outflow components of the annual groundwater budget, in acre-feet, for pre-development and recent conditions, Diamond Valley flow system, central Nevada	72
18.	Estimated inflow components for annual groundwater budget, in acre-feet, representing pre-development and recent conditions, Diamond Valley flow system, central Nevada	73
19.	Average annual groundwater budget, in acre-feet, representing current conditions, Diamond Valley flow system, central Nevada	74

JA1064 SE ROA 751

Conversion Factors

Inch/Pound to International System of Units

Ву	To obtain
Length	
2.54	centimeter (cm)
25.4	millimeter (mm)
0.3048	meter (m)
1.609	kilometer (km)
Area	
4,047	square meter (m ²)
929.0	square centimeter (cm ²)
0.09290	square meter (m ²)
2.590	square kilometer (km ²)
Volume	
16.39	cubic centimeter (cm ³)
0.01639	liter (L)
1,233	cubic meter (m ³)
Flow rate	
1,233	cubic meter per year (m ³ /yr)
0.3048	meter per year (m/yr)
0.02832	cubic meter per second (m ³ /s)
Hydraulic gradient	
0.1894	meter per kilometer (m/km)
Transmissivity*	
0.09290	meter squared per day (m ² /d)
	Length 2.54 25.4 0.3048 1.609 Area 4,047 929.0 0.09290 2.590 Volume 16.39 0.01639 1,233 Flow rate 1,233 0.3048 0.02832 Hydraulic gradient 0.1894 Transmissivity*

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as °F = $(1.8 \times ^{\circ}C) + 32$.

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as °C = (°F - 32) / 1.8.

Datum

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Altitude, as used in this report, refers to distance above the vertical datum.

Supplemental Information

Transmissivity: The standard unit for transmissivity is cubic foot per day per square foot times foot of aquifer thickness ([ft³/d]/ft²)ft. In this report, the mathematically reduced form, foot squared per day (ft²/d), is used for convenience.

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (μ S/cm at 25 °C).

Concentrations of chemical constituents in water are given in either milligrams per liter (mg/L) or micrograms per liter (μ g/L).

JA1065

Abbreviations

BCM	Basin Characterization Model
cfs	cubic feet per second
DEM	Digital elevation model
DVFS	Diamond Valley flow system
EBR	energy-balance ratio
EPA	U.S. Environmental Protection Agency
ET	evapotranspiration
ET _c	energy-balance corrected evapotranspiration
ET_{gw}	groundwater discharge by evapotranspiration
EVI	Enhanced Vegetation Index
G	Soil-heat flux at land surface
GBCAAS	Great Basin Carbonate and Alluvial Aquifer System
GDA	groundwater discharge area
GIS	Geographic Information System
GMWL	global meteoric water line
GPS	Global positioning system
DEM	Digital elevation model
Н	Sensible-heat fluxe
HA	Hydrographic area
LEDAPS	Landsat ecosystem disturbance adaptive processing system
LMWL	local meteoric water line
MCL	maximum contaminant level
MSAVI	Modified Soil-Adjusted Vegetation Index
NAIP	National Agriculture Imagery Program
NDVI	Normalized Difference Vegetation Index
NDWR	Nevada Division of Water Resources
PRISM	Parameter-elevation Relationships on Independent Slopes Model
r ²	coefficient of determination
RASA	Regional Aquifer Systems Analysis
RAWS	Remote Automatic Weather Station
Rn	Net Radiation
SNOTEL	Snow Telemetry
TDS	total dissolved solids
TM	Thematic Mapper
USGS	U.S. Geological Survey
WRS2	World Reference System 2
λΕ	Latent-heat flux

JA1066 SE ROA 753 Х

JA1067 SE ROA 754

Budgets and Chemical Characterization of Groundwater for the Diamond Valley Flow System, Central Nevada, 2011–12

By David L. Berger, C. Justin Mayers, C. Amanda Garcia, Susan G. Buto, and Jena M. Huntington

Abstract

The Diamond Valley flow system consists of six hydraulically connected hydrographic areas in central Nevada. The general down-gradient order of the areas are southern and northern Monitor Valleys, Antelope Valley, Kobeh Valley, Stevens Basin, and Diamond Valley. Groundwater flow in the Diamond Valley flow system terminates at a large playa in the northern part of Diamond Valley. Concerns relating to continued water-resources development of the flow system resulted in a phased hydrologic investigation that began in 2005 by the U.S. Geological Survey in cooperation with Eureka County. This report presents the culmination of the phased investigation to increase understanding of the groundwater resources of the basin-fill aquifers in the Diamond Valley flow system through evaluations of groundwater chemistry and budgets. Groundwater chemistry was characterized using major ions and stable isotopes from groundwater and precipitation samples. Groundwater budgets accounted for all inflows, outflows, and changes in storage, and were developed for predevelopment (pre-1950) and recent (average annual 2011–12) conditions. Major budget components include groundwater discharge by evapotranspiration and groundwater withdrawals; groundwater recharge by precipitation, and interbasin flow; and storage change.

Groundwater in the basin-fill aquifer of the Diamond Valley flow system was mostly a calcium or sodium bicarbonate water type and generally within acceptable drinking-water standards. The general water type was similar among the individual hydrographic areas. Stable isotopes of oxygen-18 and deuterium from precipitation varied seasonally, such that enrichment from evaporation was greater during warmer months than cooler months. The isotopic signature of shallow groundwater was similar to cool season precipitation, indicating recharge was relatively recent (similar to recent climatic conditions) and was derived from cool season precipitation.

Site-scale groundwater evapotranspiration was estimated from eddy-covariance and micrometeorological measurements collected at four sites and ranged from 0.15 feet per year in sparse, undisturbed shrubland to 1.13 feet per year in a grassland meadow. Vegetation indices calculated from satellite imagery and field mapping were used to define three evapotranspiration units (shrubland, grassland, and playa) and to extrapolate site-scale groundwater evapotranspiration rates to basin-scale estimates. Annual pre-development groundwater evapotranspiration for individual hydrographic areas ranged from 2,900 acre-feet per year (acre-ft/yr) in northern Monitor Valley to 35,000 acre-ft/yr in Diamond Valley. Total groundwater evapotranspiration from the Diamond Valley flow system under pre-development conditions was about 70,000 acre-ft/yr.

Areas of irrigated land in the Diamond Valley flow system increased from less than 5,000 acres in the early 1960s to more than 25,000 acres in 2012 and are mostly for growing alfalfa in southern Diamond Valley. Annual (2011–12) net ground-water withdrawals for irrigation, assumed to be the volume of groundwater consumed by crops and pastureland, ranged from about 420 acre-ft/yr in Antelope Valley to 67,000 acre-ft/yr in Diamond Valley. Total net groundwater withdrawals for irrigation in the Diamond Valley flow system were about 69,000 acre-ft/yr (2011–12).

Groundwater recharge, the largest inflow component to the Diamond Valley flow system, was determined as the sum of groundwater evapotranspiration and net subsurface outflow (subsurface outflow minus subsurface inflow). Annual groundwater recharge estimates ranged from 200 acre-ft/yr in Stevens Basin to 35,000 acre-ft/yr in Diamond Valley.

Subsurface flow between hydrographic basins was evaluated using estimated transmissivity, groundwater-flow sections derived from remotely sensed imagery, and hydraulic gradients determined from 2012 water-level data. Subsurface outflow ranged from 0 acre-ft/yr for Diamond Valley to 3,400 acre-ft/yr for northern Monitor Valley into western Kobeh Valley. Subsurface inflow ranged from 0 acre-ft/yr for southern Monitor Valley to 4,200 acre-ft/yr for Kobeh Valley from northern Monitor and Antelope Valleys.

The pre-development, steady state, groundwater budget for the Diamond Valley flow system was estimated at about 70,000 acre-ft/yr of inflow and outflow. During years 2011–12, inflow components of groundwater recharge from precipitation and subsurface inflow from adjacent basins totaled 70,000 acre-ft/yr for the DVFS, whereas outflow components included 64,000 acre-ft/yr of groundwater evapotranspiration and 69,000 acre-ft/yr of net groundwater withdrawals, or net pumpage. Spring discharge in northern Diamond Valley declined about 6,000 acre-ft/yr between pre-development time and years 2011–12. Assuming net groundwater withdrawals minus spring flow decline is equivalent to the storage change, the 2011–12 summation of inflow and storage change was balanced with outflow at about 133,000 acre-ft/yr.

JA1068

Introduction

The Diamond Valley flow system (DVFS) consists of six basins or hydrographic areas (HAs) in central Nevada (Harrill and others 1983; fig. 1). The six basins are, in part, hydrologically connected by ephemeral streams, by groundwater flow in shallow basin-fill aquifers, and, possibly, by subsurface flow in deeper carbonate-rock aquifers. Groundwater in basin-fill aquifers moves from southern Monitor Valley to northern Monitor and then into western Kobeh Valley. Eastern Kobeh Valley also receives groundwater from Antelope Valley. A small amount of groundwater moves from eastern Kobeh Valley into southern Diamond Valley in the basin fill beneath Devils Gate. The large playa in the northern part of Diamond Valley is the terminus of the flow system. Subsurface flow from Stevens Basin into adjacent basins is unknown but assumed to be minimal.

As early as 1964, the Nevada State Engineer recognized that areas in the DVFS required additional regulation of groundwater withdrawals, particularly in the southern part of Diamond Valley and, later, the entire hydrographic areas of Diamond and Kobeh Valleys. In 1983, Diamond and Kobeh Valleys both were declared "designated" groundwater basins. In designated basins, the State Engineer is granted the authority to, among other directives, "designate preferred uses of water within the respective areas" in the interest of public welfare of the area involved (Nevada Revised Statutes, chapter 534).

Local government officials and citizens are concerned about the continuing development of water resources for irrigation and mining and about the potential for groundwater exportation to basins outside the DVFS. In 2005, the U.S. Geological Survey (USGS), in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources (NDWR) began a three-phased study of the flow system to gain a better understanding of the groundwater resources. Phase 3 (2009–12), documented in this report, was the final phase of work designed to build on and further characterize the groundwater resources of the flow system by evaluating groundwater quality and groundwater budgets, with emphasis on groundwater to fulfill a part of their water needs) under predevelopment conditions.

Purpose and Scope

This report presents the culmination of results from the multi-phased investigation of the groundwater resources in the DVFS. The report characterizes groundwater chemistry of the basin-fill aquifers in terms of major-ion water types, drinking-water standards, and groundwater recharge and mixing. Annual groundwater budgets for each hydrographic area, representing recent conditions (2011–12), are presented and compared with revised pre-development (pre-1950) groundwater budgets. Components of the groundwater budgets include groundwater recharge from precipitation; subsurface flow between basins; and groundwater discharge by (1)

evapotranspiration from areas composed of phreatophytic vegetation, (2) evaporation from playas, and (3) estimated net groundwater withdrawals for irrigation. Groundwater evapotranspiration from phreatophyte areas was measured in Kobeh Valley, and adjusted values were applied to other DVFS basins. A groundwater budget for the complete DVFS also is presented and includes a summation of all inflow and outflow components and an estimate of storage loss resulting from groundwater withdrawals.

Description of Study Area

The DVFS (fig. 1) covers about 3,100 square miles (mi², or 1,984,000 acres) in central Nevada and includes six basins or HAs. The flow system was defined initially by Harrill and others (1983) as part of a regional aquifer-systems analysis in the Great Basin of Nevada, Utah, and adjacent states. A large playa (nearly 43,000 acres) in the northern part of Diamond Valley is the terminus of the DVFS. Another playa, covering about 1,400 acres, is in the northern part of southern Monitor Valley. Most groundwater development in the DVFS has been in the southern part of Diamond Valley and has resulted in nearly 100 feet (ft) of water-level decline since 1962. A more detailed description of the study area can be found in Tumbusch and Plume (2006).

The DVFS is mostly in Eureka County; however, small portions lie in northern Nye, eastern Lander, and southern Elko Counties (fig. 1). The city of Eureka (population of about 610) is an unincorporated community and the county seat of Eureka County (population of about 2,000; U.S. Census Bureau, 2015a, 2015b). U.S. Highway 50 traverses Kobeh Valley and southern Diamond Valley, connecting the towns of Austin and Eureka. Nevada State Route 278 runs from 3 miles west of Eureka north along the western side of southern Diamond Valley (fig. 1).

Previous Hydrologic Studies

The earliest water-resource appraisals in the study area were commissioned by the Nevada State Legislature in 1960 and published in two reconnaissance-series reports. Eakin (1962) focused on Diamond Valley and Rush and Everett (1964) focused on southern and northern Monitor Valleys, Antelope Valley, Kobeh Valley, and Stevens Basin. The reconnaissance studies provided available climatic data and general conditions of the hydrologic systems, including geology and groundwater quality in terms of suitability for agricultural use. Additionally, both studies provided estimates of annual groundwater recharge and discharge under nearly natural conditions. Natural groundwater recharge and discharge assumes pre-development, steady-state conditions, with little or no anthropogenic effects. Although water-chemistry data for groundwater collected from wells and springs were limited at the time of the reconnaissance studies, groundwater was considered suitable for irrigation in most areas. The reconnaissance studies relied on the precipitation map developed by

JA1069

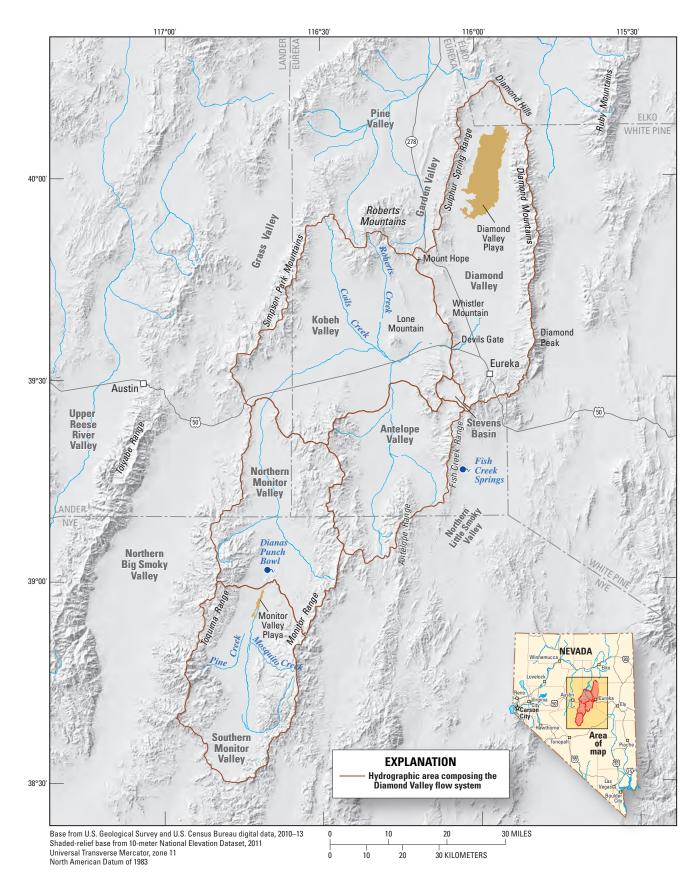


Figure 1. Hydrographic areas and selected geographic features in the Diamond Valley flow system, central Nevada.

JA1070 SE ROA 757

4 Budgets and Chemical Characterization of Groundwater for the Diamond Valley Flow System, Central Nevada, 2011–12

Hardman (1936) and Hardman and Mason (1949) to estimate groundwater recharge using an empirical method known as the Maxey-Eakin Method (Maxey and Eakin, 1949; Eakin and others, 1951). At the time of these studies, groundwater discharge in the area was dominated by evapotranspiration (ET) from areas with phreatophytic vegetation, and, to a much lesser degree, by evaporation from playas. Groundwater ET is composed of evaporation from bare-soil surfaces with transpiration by phreatophytes. Natural groundwater discharge through ET was estimated by applying assigned groundwater ET and groundwater evaporation rates to areas of phreatophytes and playas, respectively. These assigned rates were adopted from studies outside the study area (Lee, 1912; White, 1932; Young and Blaney, 1942). Groundwater discharge was not estimated from the large playa in the northern part of Diamond Valley (Eakin, 1962). The resultant balance between groundwater recharge and discharge developed by the two studies indicated that recharge was about 70 percent of discharge in Diamond Valley and about 120 percent of discharge in the other four basins.

In the early 1960s, the State Engineer became concerned about the increasing groundwater withdrawals in southern Diamond Valley. In response, the USGS performed a more detailed evaluation of the hydrology of Diamond Valley with an emphasis on the effects of groundwater withdrawals as of 1965 (Harrill, 1968). To facilitate the analysis, Harrill (1968) divided Diamond Valley into north and south subareas. Nearly all the natural discharge was in the north subarea, whereas nearly all major groundwater development was in the south subarea. As part of the reappraisal, two groundwater-level surfaces were created-pre-development (1950) and postdevelopment (1965). Additionally, a revised precipitationaltitude relation was developed on the basis of the available precipitation data. Harrill (1968) concluded that average annual precipitation was generally greater in the northern subarea than in the southern subarea and that the precipitationaltitude relation in the southern subarea probably was similar to that in Kobeh Valley. This north-south division in precipitation resulted in a 30 percent increase in precipitation-derived groundwater recharge when compared to estimates by Eakin (1962). Harrill (1968) developed a groundwater budget for Diamond Valley that included inflow components of recharge from precipitation, subsurface flow from Kobeh Valley through Devil's Gate, and subsurface flow from Garden Valley (outside the flow system) to the northwest of Diamond Valley (fig. 1). Outflow components of the budget included groundwater discharge by (1) ET from phreatophyte-dominated areas, (2) springs, and (3) playa evaporation. Groundwater chemical analyses allowed Harrill (1968) to develop a general relation between water chemistry and groundwater flow. Groundwater in Diamond Valley, except that in the shallow aquifer in the north subarea, was generally suitable for irrigation, stock, and domestic use. Harrill (1968) cautioned that continued groundwater withdrawals could cause the reversal of natural gradients toward the playa and induce flow of poor-quality water toward the developed areas in the south subarea.

The DVFS, as it is currently defined, consists of the six basins in the study area and was first recognized and delineated by Harrill and others (1983) and Harrill and others (1988) in an effort to improve the understanding of groundwater flow on a regional scale (Regional Aquifer Systems Analysis, or RASA). Using the limited existing data at the time, flow-system boundaries were generally defined and guided by regional-flow potential lines based on groundwater altitudes. A basic premise for flow-system delineation was that each flow system terminated in a discharge area.

Two reports have been published as part of the phased approach of the (2005–12) study. The phase 1 study (2005–06; Tumbusch and Plume, 2006) defined the hydrogeologic framework of the flow system, evaluated the presence and movement of groundwater, and quantified historical waterlevel changes. The phase 2 study (2006–09; Knochenmus and others, 2011) provided data collected from 2006 to 2009 and described the general approach for estimating natural groundwater discharge as part of phase 3.

Hydrologic Setting

Nearly all water in the study area originates as precipitation, either in the form of rain or snow. Some of the precipitation runs off, most is evaporated or consumed by vegetation, and some eventually recharges the groundwater system. Streams in the study area generally are ephemeral and flow only during spring runoff or as a result of intense storms; however, some streams in the upper reaches of the watershed are perennial, but typically infiltrate before reaching the valley floor. Groundwater in the basin-fill aquifer is under confined and unconfined conditions and is derived from infiltration of mountain-block precipitation and streamflow. The movement of groundwater is controlled, in part, by the hydrogeology. The hydrogeology in the DVFS consists of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, volcanic rocks, and basin-fill deposits (plate 1). Details on the hydrogeologic units identified in the study area and their water-bearing characteristics can be found in Tumbusch and Plume (2006).

A separate, cooperative monitoring program by the USGS and Eureka County designed to collect streamflow and groundwater data in and around the southern extent of the Roberts Mountains (figs. 1, 2) began in 2010. The monitoring program includes continuous data collection at 5 surfacewater and 1 groundwater site, 13 miscellaneous streamflow and 3 groundwater-level measurements, and water-chemistry sampling at 13 sites. The program was designed to characterize baseline hydrologic conditions in response to a proposed molybdenum mine in the Mount Hope area (fig. 1). As part of this program, seepage was estimated along two streams that originate in the Roberts Mountains.

> JA1071 SE ROA 758

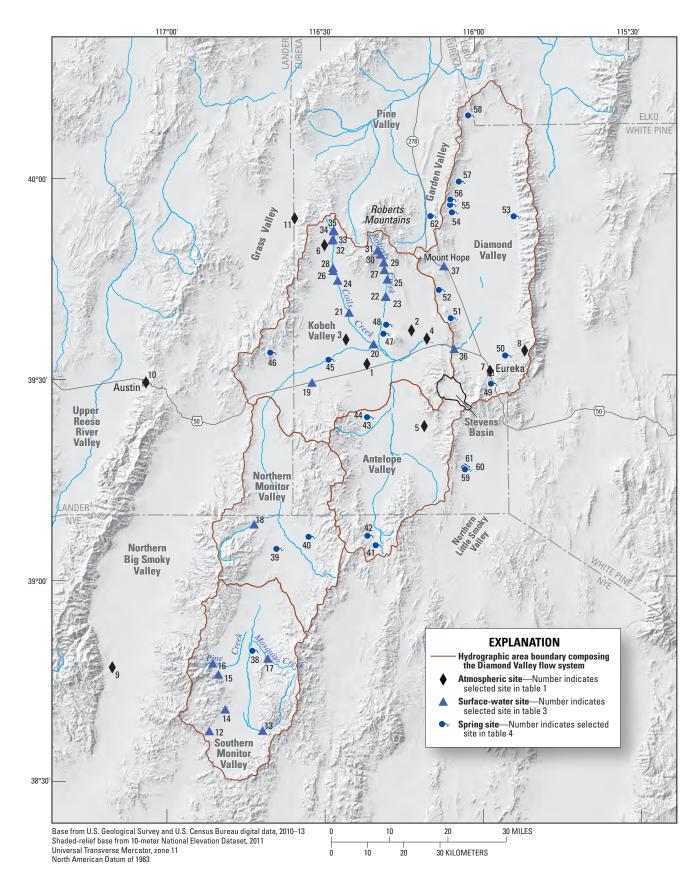


Figure 2. Atmospheric sites, surface-water sites, and spring sites in the Diamond Valley flow system, central Nevada.

JA1072 SE ROA 759

Climate

The climate of central Nevada generally can be divided into two zones. The valley floors are part of the mid-latitude steppe zone, which is semiarid with warm to hot summers and cold winters. The surrounding mountain ranges are a part of the subhumid continental zone, with cool to mild summers and cold winters, where annual precipitation is mostly snow (Houghton and others, 1975). The majority of the precipitation comes from the Pacific Ocean as winter storms. Localized summer thunder storms can produce large amounts of rain, but do not contribute much to the total annual precipitation in the area.

Climate conditions vary considerably in the study area by location, altitude, and seasonality. Climate data based on long-term averages can be advantageous for comparison of discontinuous or recent short-term datasets with historical conditions. Continuous long-term climate data were very limited in the study area; however, 30-year averages could be computed from selected sites near the study area (Western Region Climate Center, 2015; National Centers for Environmental Information, 2016). The closest climate stations that had annual precipitation and temperature data for a 30-year period (1981–2010) included Austin number 2, Beowawe 49 S (U of N Ranch), Eureka, and Smoky Valley Carvers (sites 10, 11, 7, and 9; respectively, fig. 2; tables 1, 2). Weather stations in the study area (fig. 2; tables 1, 2) that had between 20 and 30 years of annual climate data included Diamond Peak Snow Telemetry (SNOTEL, 1984–2012, site 8), Coils Creek Remote Automatic Weather Station (RAWS, 1990-2012, site 6), and Combs Canyon RAWS (1986–2012, site 5). As part of this study, precipitation and temperature data (2011–12) were collected at four ET sites established in Kobeh Valley (sites 1–4; fig. 2; tables 1, 2).

Average monthly temperatures over the 30-year period (1981–2010) in Austin, Beowawe, Eureka, and Smoky Valley ranged from a low of 26–31 degrees Fahrenheit (°F) in December and January to a high of 69–73 °F in July. Although these weather stations mostly lie outside the DVFS, the temperature range is likely comparable to that of similar altitudes in the study area. During the 1991–2010 period, average monthly temperatures at higher altitudes, represented by Diamond Peak, ranged from 26 to nearly 66 °F.

A simple linear relation (fig. 3) between the station altitude and the 30-year average annual precipitation (1981-2010) was developed for Austin (6,780 ft), Beowawe (5,740 ft), Eureka (6,430 ft), and Smoky Valley (5,647 ft). The relation was used to compare the long-term average annual precipitation to that measured in the study area for water years¹ 2011 and 2012. About 87 percent of the variability in average annual precipitation at the four long-term weather stations can be explained by altitude. Precipitation collected from stations, including those within the study area (Coils Creek, Combs Canyon, Eureka, and the four Kobeh Valley ET sites), was generally greater in 2011 and less in 2012 than the long-term average (1981–2010). At the Kobeh Valley ET sites, 2011 precipitation averaged 1.3 times more than the long-term average, whereas 2012 values averaged 1.2 times less than the long-term average. For stations with complete precipitation records for water years 2011 and 2012, precipitation in water year 2011 was 17–55 percent greater than in 2012.

NOAA, N	ational Oceanic and Atmospheric	Administration; ET, Evapotranspir	ration; WX, general weather; GH	CND, Global	Historical Clim	atology Netwo	ork-Daily]	
Site number	Hydrographic area	USGS or NOAA station identifier	Local or site name	Latitude (degrees)	Longitude (degrees)	Altitude (feet)	Available data	Figure(s)
1	Kobeh Valley	¹ 393214116212402	Sparse shrubland	39.5371	116.3576	6,098.7	ET, WX	2, 17, 18B
2	Kobeh Valley	¹ 393711116124501	Moderate-to-dense shrubland	39.6197	116.2134	6,051.8	ET, WX	2, 17, 18B
3	Kobeh Valley	¹ 393553116252401	Moderate-to-dense shrubland	39.5981	116.4242	6,131.3	ET, WX	2, 17, 18B
4	Kobeh Valley	¹ 393555116094802	Grassland	39.5987	116.1642	6,012.5	ET, WX	2, 17, 18B
5	Antelope Valley	² GHCND:USR0000NCOM	Combs Canyon, NV US	39.3814	116.175	6,590	WX	2
6	Kobeh Valley	² GHCND:USR0000NCOI	Coils Creek, NV US	39.8333	116.4917	6,800	WX	2
7	Diamond Valley	² GHCND:USC00262708	Eureka, NV US	39.517	115.9621	6,430	WX	2
8	Diamond Valley	² GHCND:USS0015K03S	Diamond Peak, NV US	39.5667	115.85	8,000	WX	2
9	Northern Big Smoky Valley	² GHCND:USC00267620	Smoky Valley Carvers, NV US	38.784	117.1739	5,647	WX	2
10	Upper Reese River Valley	² GHCND:USC00260507	Austin Number 2, NV US	39.493	117.0675	6,780	WX	2
11	Grass Valley	² GHCND:USC00260800	Beowawe 49 S U of N Ranch, NV US	39.9004	116.5876	5,740	WX	2

 Table 1.
 Location and general description of atmospheric measurement sites, Diamond Valley flow system, central Nevada.

[Latitude and longitude values are in the North American Datum 1983. Altitude values are in the North American Vertical Datum 1988. USGS, U.S. Geological Survey; NOAA, National Oceanic and Atmospheric Administration; ET, Evapotranspiration; WX, general weather; GHCND, Global Historical Climatology Network-Daily]

¹USGS station identification; latitude, longitude, and altitude values are from the USGS National Water Information System (*http://waterdata.usgs.gov/nwis*). ²NOAA station identification; latitude, longitude, and altitude values are from the NOAA National Climatic Data Center (*http://www.ncdc.noaa.gov*).

JA1073

¹ A water year is the period from October 1 to September 30 and is designated by the year in which it ends. Water year is used almost exclusively throughout this report. In order to reduce confusion between calendar years and water years in this report, all reference to years and periods is to water years, unless specifically referred to as a calendar year.

						Measure	Measured precipitation	ntion			PRISN	PRISM precipitation	uo
Site number	r r	USGS or NOAA station identifier	Local or site name	Average annual (1981–2010) ¹	2007	2008	2009	2010	2011	2012	Average annual (1981–2010) ¹	2011	2012
1	Kobeh Valley	2393214116212402	Sparse shrubland							6.8	8.9	11.4	7.0
6	Kobeh Valley	2393711116124501	Moderate-to-dense shrubland	I	I				12.3	8	9.2	11.8	7.1
3	Kobeh Valley	2393553116252401	Moderate-to-dense shrubland						10.7	6.6	9.1	11.4	6.8
4	Kobeh Valley	2393555116094802	Grassland							×	9.2	12.2	7.4
5	Antelope Valley	3GHCND:USR0000NCOM	1 Combs Canyon, NV US ⁴	IR	5.0	1.7	5.8	3.0	7.9	6.6	9.6	14.1	9.8
9	Kobeh Valley	3GHCND:USR0000NCOI	Coils Creek, NV US ⁴	IR	3.4	1.1	8.4	2.9	9.3	4.1	12.0	14.6	8.1
7	Diamond Valley	³ GHCND:USC00262708	Eureka, NV US ⁵	11.30	11.9	6.3	11.1	10.6	14.7	9.8	11.0	15.4	10.1
×	Diamond Valley	3GHCND:USS0015K03S	Diamond Peak, NV US ⁶	IR	IR	IR	IR	IR	IR	IR	18.1	19.0	11.5
6	Northern Big Smoky Valley	³ GHCND:USC00267620	Smoky Valley Carvers, NV US5	6.81	4.8	3.2	6.3	6.0	9.7	5.6	6.5	8.5	6.1
10	Upper Reese River Valley	³ GHCND:USC00260507	Austin Number 2, NV US ^{5,7}	13.19	IR	IR	IR	IR	IR	IR	12.1	15.9	8.3
11	11 Grass Valley	³ GHCND:USC00260800	Beowawe 49 S U of N Ranch, NV US ⁵	9.58	7.9	5.4	10.5	6.9	IR	IR	9.7	13.7	7.4
¹ Val	¹ Values based on calendar vear.												

Geold SIL 0001 5 40410 44 st to وماء الم 5 6 PDD16 Regressions on Independent Slopes Model (PRISM) estimates, central Nevada. 1 tod for . -[All v

Table 2. Measured precipitation data at four evapotranspiration sites in Kobeh Valley, seven climate stations near the Diamond Valley flow system, and Parameter-elevation

⁴Remote Automatic Weather Station (RAWS). Values based on calendar year. ³NOAA station identification. ²USGS station identification.

⁵Gap filled missing monthly data using nearby stations. ⁶Snow Telemetry (SNOTEL). ⁷Normalized missing annual data to Eureka station.

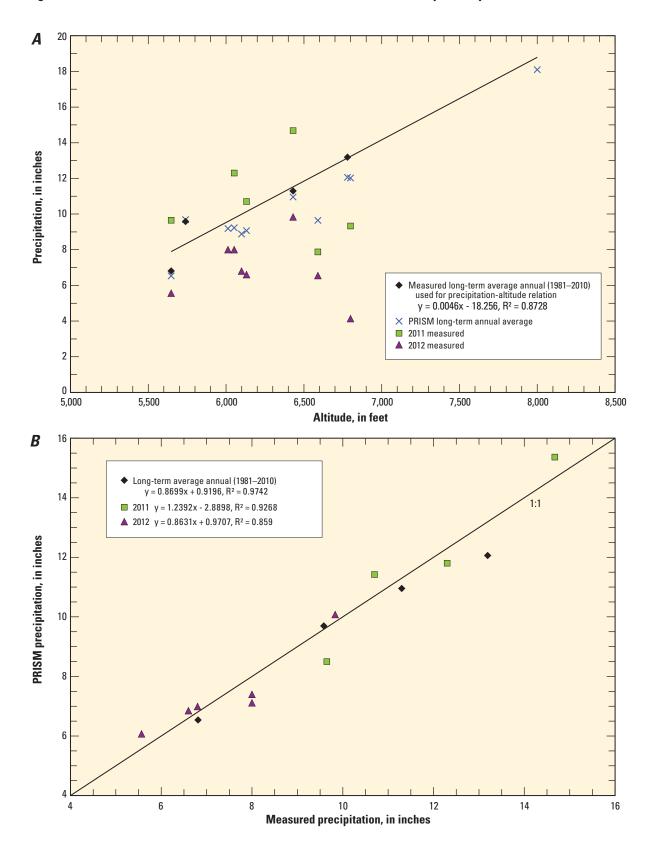


Figure 3. Comparison between average annual precipitation for four long-term precipitation stations (1981–2010), Diamond Valley flow system, central Nevada, and *A*, station altitude, and *B*, PRISM (Parameter-elevation Relationships on Independent Slopes Model) derived precipitation. JA1075

Owing to the limited long-term precipitation and temperature datasets in the study area, long-term, average annual precipitation for Austin, Beowawe, Eureka, and Smoky Valley (1981-2010) was compared with 1981-2010 Parameter-elevation Relationships on Independent Slopes Model (PRISM; PRISM climate group, 2014; table 2) precipitation. Evaluation of long-term precipitation was relevant for evaluating pre-development groundwater ET rates across the DVFS (see the "Groundwater Discharge" section). The 30-year average annual PRISM estimates at the Austin, Eureka, and Smoky Valley sites were an average of 5-percent less than measured 30-year average annual values, whereas the 30-year PRISM estimate at the Beowawe site was one percent greater than the measured 30-year value. Differences could, in part, reflect different accumulation periods and the generalized area of PRISM estimates (800-meter or 0.5-mile cell size). Measured data were for water years 1981-2010, whereas PRISM data were for calendar years 1981–2010. Despite these differences, a least squares regression explained about 97 percent of the variability between measured and estimated values (fig. 3).

Comparisons between measured precipitation and PRISM data (table 2) also were made for water year 2011 at four sites and water year 2012 at six sites using least-squares regressions. The PRISM rates at Coils Creek (Kobeh Valley) and Combs Canyon (Antelope Valley) were consistently above

measured values (by an average of 70 percent), and including these sites in multi-site comparisons between measured and PRISM values produced poor relations (coefficient of determination, or r^2 , 0.51–0.52). These precipitation stations were in steep, narrow canyons and steep terrain. Considering that water-year PRISM estimates are generalized to a 4-kilometer (2.5-mile) cell size, discrepancies between measured and estimated values in this terrain type were expected. Water year 2011 and 2012 relations that excluded these two sites were improved markedly (r^2 0.96 and 0.93, respectively; fig. 3) and indicated that PRISM-estimated values largely captured the variability in precipitation measured across the study area. At ET sites on the floor of Kobeh Valley (see the "Evapotranspiration" section), annual measured and PRISM-estimated precipitation rates during 2011-12 were within 2 percent, on average (table 2). Site data were scaled to the basin and flowsystem level using remote sensing and long-term (1981–2010) PRISM data.

Annual precipitation data from Eureka (1966–2012) were used to evaluate trends in long-term climate conditions in the study area (fig. 4). The Eureka precipitation dataset was nearly complete, with 6 of the 48 years having missing data for no more than 3 months per year. The missing data were gap filled by using precipitation data from nearby stations. The estimated average annual precipitation at Eureka for the

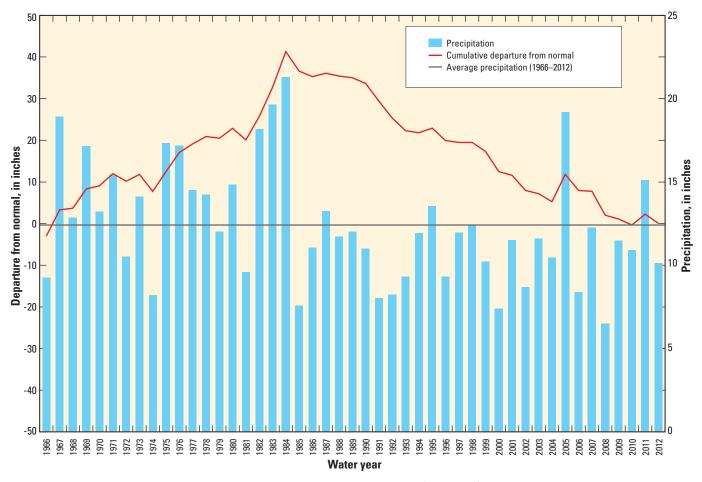


Figure 4. Annual water year precipitation and cumulative departure from normal (1966–2012), Eureka, central Nevada. JA1076

10 Budgets and Chemical Characterization of Groundwater for the Diamond Valley Flow System, Central Nevada, 2011–12

48 years was 12.04 inches (in.). Cumulative departure from normal can be used to characterize trends in precipitation, where upward slopes indicate increased precipitation and downward slopes indicate declining precipitation. The graph of cumulative departure from normal for Eureka (fig. 4) shows an upward slope from 1966 to 1984, indicating most years had above average precipitation. From 1985 to 2012, the cumulative departure from normal indicated declining precipitation. In general, annual precipitation over the 28 years from 1985 through 2012 exhibited a trend of declining precipitation.

Surface Water

Daily streamflow data in the DVFS were available at 5 sites, and intermittent or peak discharge measurements collected over various periods were available at 21 sites (table 3). In April and May 1964, Rush and Everett (1964) collected 38 miscellaneous streamflow measurements in southern and northern Monitor, Antelope, and Kobeh Valleys. Harrill (1968) published a series of discharge measurements for 13 streams in Diamond Valley collected in 1965 and 1966. Additional streamflow data in southern and northern Monitor Valleys were available from three sites with continuous daily streamflow from 1977 generally through 2005 (sites 16–18; fig. 2; table 3) and from four sites with monthly discharge measurements from April 1997 to September 2000 (sites 12–15; fig. 2; table 3). In 2010, the USGS began collecting streamflow data at 2 sites (sites 26 and 29; fig. 2; table 3) and miscellaneous discharge data at 14 sites along Coils Creek and Roberts Creek in northern Kobeh Valley (sites 20–25, 27, 28, 30–35; fig. 2; table 3). As part of the 2010 monitoring program, the USGS also has been collecting miscellaneous discharge data at a site in Devil's Gate (site 36; fig. 2; table 3), which represents the only surface-water outflow from Kobeh Valley.

Infiltration of streamflow is a source of groundwater recharge. Most streamflow originates in the mountain block and infiltrates through coarse channel deposits on alluvial fans. Occasionally, under above-average conditions (for example, water year 2011) or following intense storm events, precipitation can generate streamflow that reaches the valley floor.

 Table 3.
 Location and general information of surface-water measurement sites, Diamond Valley flow system, central Nevada.

 [The locations of sites are shown on figure 2. Latitude and longitude values are in the North American Datum 1983. Altitude values are in the North American Vertical Datum 1988.

 Latitude, longitude, and altitude values are from the USGS National Water Information System (http://waterdata.usgs.gov/nwis).
 USGS, U.S. Geological Survey; Qm, miscellaneous discharge measurement; Qd, daily discharge; Qp, peak discharge; Qw, water quality]

Site number	Hydrographic area	USGS station identifier	Latitude (degrees)	Longitude (degrees)	Altitude (feet)	Available data
12	Southern Monitor Valley	¹ 10245912	38.626	116.8656	7,825	Qm
13	Southern Monitor Valley	¹ 10245905	38.6266	116.6967	7,255	Qm
14	Southern Monitor Valley	¹ 10245902	38.6799	116.8151	7,305	Qm
15	Southern Monitor Valley	¹ 10245901	38.7669	116.8367	7,425	Qm
16	Southern Monitor Valley	¹ 10245900	38.7944	116.8545	7,564.73	Qd, Qm, Qp, Qw
17	Southern Monitor Valley	¹ 10245910	38.806	116.6795	7,204.65	Qd, Qm, Qp, Qw
18	Southern Monitor Valley	¹ 10245925	39.14	116.7212	6,884.36	Qd, Qm, Qp, Qw
19	Kobeh Valley	¹ 10245950	39.4921	116.5342	6,204.23	Qp
20	Kobeh Valley	393513116200901	39.5869	116.3357	6,086	Qm
21	Kobeh Valley	393956116244901	39.6657	116.4135	6,193	Qm
22	Kobeh Valley	394217116174101	39.7046	116.2948	6,296	Qm
23	Kobeh Valley	394217116174601	39.7048	116.2961	6,296	Qm
24	Kobeh Valley	394444116270101	39.7457	116.4502	6,348	Qm
25	Kobeh Valley	394452116172401	39.7478	116.29	6,464	Qm
26	Kobeh Valley	10245960	39.7698	116.4644	6,405	Qd, Qm, Qp, Qw
27	Kobeh Valley	394616116175701	39.7712	116.2992	6,612	Qm
28	Kobeh Valley	394638116275501	39.7774	116.4652	6,437	Qm
29	Kobeh Valley	10245970	39.7898	116.3009	6,743	Qd, Qm, Qp, Qw
30	Kobeh Valley	394835116183901	39.8098	116.3109	6,923	Qm
31	Kobeh Valley	394914116191401	39.8206	116.3205	7,075	Qm
32	Kobeh Valley	395045116280201	39.8458	116.4671	6,643	Qm
33	Kobeh Valley	395052116275001	39.8479	116.4638	6,641	Qm
34	Kobeh Valley	395206116274001	39.8684	116.4611	6,722	Qm
35	Kobeh Valley	365216116274401	39.8711	116.4621	6,741	Qm
36	Diamond Valley	10245980	39.5733	116.0767	6,004	Qm, Qp
37	Diamond Valley	¹ 10246010	39.7791	116.1073	6,024	Qp

¹Inactive site.

JA1077

Seepage estimates can be used to establish a relation between streamflow and groundwater by delineating reaches that are gaining or losing streamflow at a particular time. Seepage was estimated using a series of eight discharge measurements along Coils Creek (sites 20, 21, 24, 28, 32–35; fig. 2; table 3) and seven measurements along Roberts Creek (sites 22, 23, 25, 27, 29–31; fig. 2; table 3) in spring 2011. On the basis of these discharge measurements, Coils Creek gained about 16 cubic feet per second (cfs) of streamflow in the upper reach between sites 35 and 26 (fig. 2; table 3). Downstream from site 26, Coils Creek began to lose flow where the channel crossed alluvial deposits. The discharge measurement taken farthest downstream (site 20; fig. 2; table 3) was 1 cfs, indicating that 16 cfs of streamflow infiltrated beneath Coils Creek and recharged the shallow basin-fill aquifer. Similar gain and loss results were observed along Roberts Creek, where nearly 10 cfs of streamflow was lost, likely infiltrating and recharging the shallow basin-fill aquifer beneath the stream. Although ET occurred along the measurement reaches, this loss was considered to be negligible compared with the streamflow loss.

Playas are flat, undrained, and unvegetated areas that typically are on a valley floor and periodically flood, accumulating fine-grained sediments and salts. Sediment grain size increases from the playa center toward the edge, which typically is bounded by phreatophytes and springs. Water can accumulate on playas from run-on of surface water, spring discharge, or direct precipitation. Surface morphology of Nevada playas typically ranges from hard, compact, generally smooth surfaces to soft, friable, or puffy surfaces. Hard surfaces typically reflect recent inundation by precipitation or run-on, whereas soft, puffy surfaces often reflect recent soil-water evaporation and subsequent salt deposition. A recent study by Garcia and others (2014) indicated that soft, puffy surfaces only were present following cool season precipitation. Low potential ET during cooler months facilitated downward percolation of precipitation or run-on and mixing with resident saline soil water. Subsequent evaporation of this water provided a mechanism for salt migration to and deposition on the playa surface. Friable surfaces were apparent following percolation and subsequent evaporation of cool-season precipitation and during the warmest and driest time of year. The source of playa soil water can vary seasonally from percolation of precipitation or "run-on" to groundwater. Similarly, groundwater discharging from playas can be derived from a mix of local recharge from precipitation and run-on to the playa and regional groundwater recharge (Garcia and others, 2014). Additional research is required to fully understand the role playas play in hydrologic processes.

The DVFS contains two playas—a relatively small playa (about 1,400 acres) in the northern part of southern Monitor Valley and a large playa (about 43,000 acres) in northern Diamond Valley (fig. 1). Rush and Everett (1964) noted that the southern Monitor Valley playa was dry in mid-April, but was flooded from a subsequent storm and snowmelt in early May. Similar patterns were observed during this study. Along the northeast margin, the playa surface was occasionally moist from small groundwater seeps. North of this playa in the south part of northern Monitor Valley, numerous springs have created several wetland areas and associated aquatic vegetation. The playa covering most of the northern part of Diamond Valley is considered the terminus of the DVFS (Harrill and others, 1983). Similar to the much smaller playa in southern Monitor Valley, this large playa is bordered by phreatophytes. Harrill (1968) reported that fault-controlled warm springs exist along the western margin of the playa, and small, warm groundwater seeps exist along the eastern margin. The presence of numerous seeps and springs surrounding southern Monitor Valley and Diamond Valley playas is indicative of permeability contrasts between alluvial and playa sediments that limit groundwater flow within playas.

Groundwater

Nearly all groundwater in the DVFS originates from precipitation. Most precipitation falls, and consequently most groundwater recharges, in the higher altitudes of the mountainous regions within the DVFS. Some precipitation runs off as streamflow and eventually infiltrates through coarse channel deposits on alluvial fans. Groundwater in the basin fill generally is unconfined at shallow depths (water table) and confined at greater depths. Basin-fill deposits make up the principal aquifers in the DVFS and occupy structural basins in sedimentary and igneous rocks. Groundwater resides in the rock units that make up the mountain blocks and underlie the basins, but the connection to the basin-fill aquifer is poorly understood. Discharge of warm or hot water from springs or wells indicates deep circulation of groundwater, probably from carbonate or volcanic rock, at depth (Harrill, 1968; Tumbusch and Plume, 2006).

Groundwater flows down gradient from areas of recharge toward areas of discharge, and in the DVFS, groundwater flows toward the playa in northern Diamond Valley. Contours of water-level altitude are used to define the shape and gradient of the groundwater surface to indicate general directions of groundwater movement. As part of this study phase, 2012 groundwater levels (plate 1) were delineated largely on the basis of spring altitudes (fig. 2; table 4) and water-level data collected from wells (fig. 5; table 5). In Diamond Valley, the distribution of transmissivity and aquifer textures developed by Harrill (1968) also was used to guide the development of water-level contours. Most wells were measured in spring 2012; a few wells measured in 2005 could not be re-measured, but these were in areas of limited groundwater development and were assumed to be similar to the 2012 water table. The 2012 water-table surface can be compared to the 2005 watertable map (Tumbusch and Plume, 2006), where overlapping data exist, and to the 1950 pre-development water-table map in Diamond Valley (Harrill, 1968). In general, water-level altitudes and groundwater-flow directions have not changed since 2005 in southern and northern Monitor, Antelope, or Kobeh Valleys owing to the lack of groundwater development in those areas (sites 73, 83, 99, 140, 161; fig. 6).

JA1078

12 Budgets and Chemical Characterization of Groundwater for the Diamond Valley Flow System, Central Nevada, 2011–12

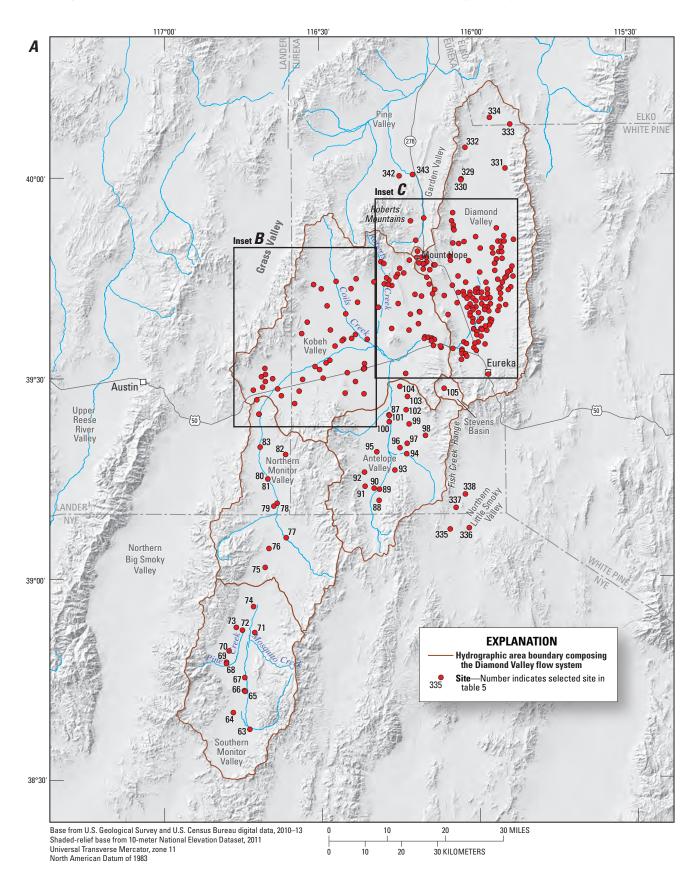


Figure 5. Groundwater sites in *A*, the Diamond Valley flow system, central Nevada; *B*, parts of northern Monitor and Kobeh Valleys; *C*, parts of Kobeh and Diamond Valleys. JA1079

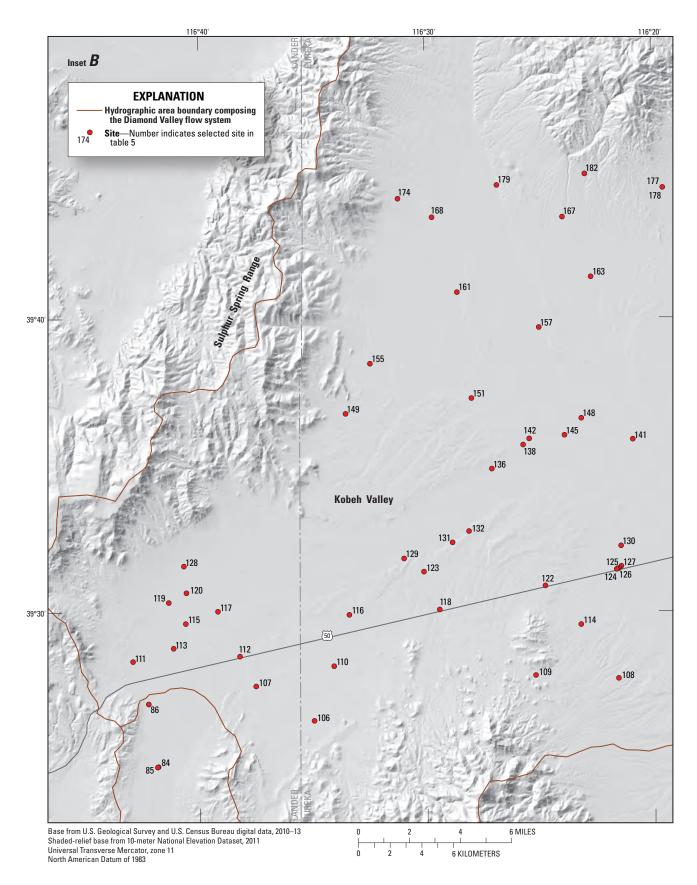


Figure 5. Groundwater sites in *A*, the Diamond Valley flow system, central Nevada; *B*, parts of northern Monitor and Kobeh Valleys; *C*, parts of Kobeh and Diamond Valleys.—Continued JA1080

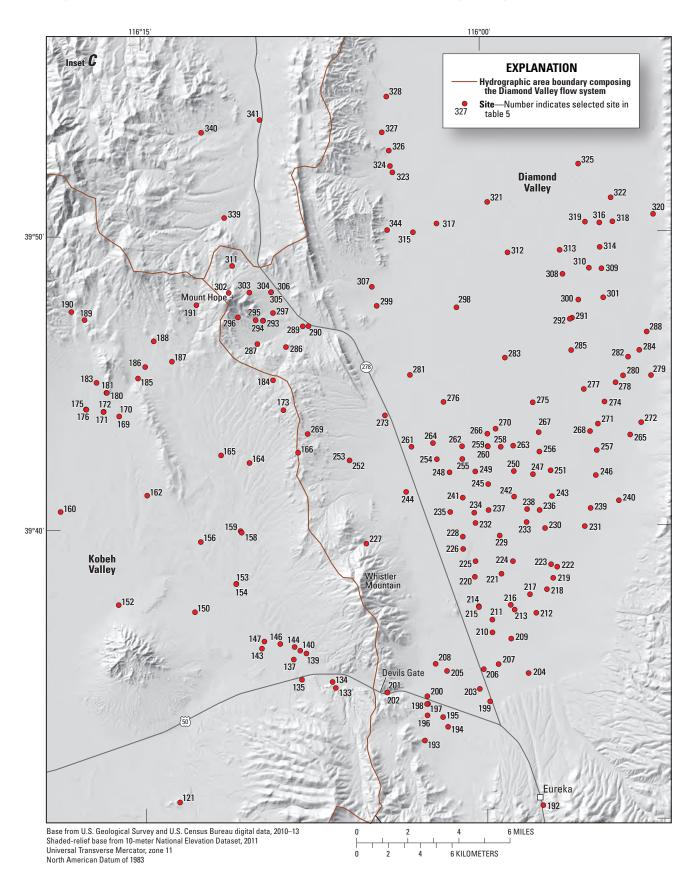


Figure 5. Maps showing groundwater sites in *A*, the Diamond Valley flow system, central Nevada: *B*, Kobeh Valley; *C*, Diamond Valley.—Continued JA1081

Latitude and longitude values are in the North American Datum 1983. Altitude values are in the North American Vertical Datum 1988. USGS, United States Geological Survey; —, no data; Qm, miscellaneous discharge measurement; Qw, water quality; Pl., Plate] Location and general information of spring-measurement sites, Diamond Valley flow system, central Nevada. Table 4.

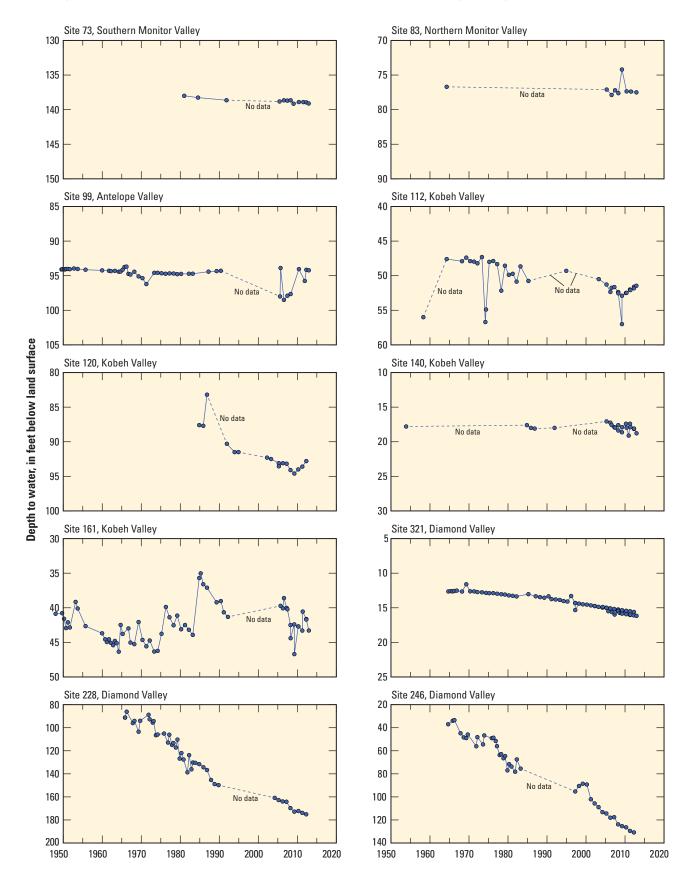
water qua	water quality, r1., r1atej								
Site number	Hydrographic area	USGS station identifier	Nevada State station identifier	Other station identifier	Latitude (degrees)	Longitude (degrees)	Altitude (feet)	Available data	Figure(s)
38	Southern Monitor Valley	1384930116430000	I	1	38.8249	116.7176	6,836	Qw	2, 8
39	Northern Monitor Valley	1390445116382000	I	Ι	39.0791	116.6398	6,661	Qw	2, 8
40	Northern Monitor Valley	1390628116320800	Ι	Ι	39.1077	116.5365	7,047	Qw	2, 8
41	Antelope Valley	1390508116191800	I	Ι	39.0855	116.3226	7,346	Qw	2, 8
42	Antelope Valley	1390634116205300	Ι	Ι	39.1094	116.349	7,070	Qw	2, 8
43	Antelope Valley	¹ 392417116204801	I		39.4047	116.3476	6,342	Qw	2, Pl. 1
4	Antelope Valley	1392418116204700	Ι	Ι	39.4049	116.3473	6,342	Qw	2, Pl. 1
45	Kobeh Valley	1393255116280801			39.5485	116.4698	6,154	Qm	2, Pl. 1
46	Kobeh Valley	1393400116392401	Ι	1	39.5667	116.6567	6,684	Qw	2, 8
47	Kobeh Valley		² 139 N20 E50 13ACCA1	I	39.6121	116.2924	6,113	Qm	2, Pl. 1
48	Kobeh Valley		² 139 N20 E51 06BBB 1		39.6344	116.2832	6,139	Qm	2, Pl. 1
49	Diamond Valley	1392904115565501		³ 19/53-25d	39.4844	115.9486	6,809	Qw	2, 8
50	Diamond Valley	¹ 393316115540501	I	1	39.5544	115.9014	6,820	Qw	2, 8
51	Diamond Valley	I	² 153 N21 E52 25CCCD1		39.6488	116.0757	6,425	Qm	2, Pl. 1
52	Diamond Valley	I	² 153 N21 E52 03BBBD1	1	39.72	116.1131	6,330	Qm	2, Pl. 1
53	Diamond Valley	¹ 395415115524301		³ 23/54-3db; Taft Spring; Thompson Spring	39.9008	115.8687	5,844	Qm, Qw	2, 8
54	Diamond Valley	1395444116040301		Bailey Spring	39.9122	116.0684	5,810	Qm	2
55	Diamond Valley	1395552116042301		Indian Camp Spring	39.9310	116.0740	5,810	Qm	2
56	Diamond Valley	1395628116042801	153 N24 E52 23DCAD1	³ 24/52-23ca; Shipley Hot Spring	39.9438	116.0734	5,800	Qm, Qw	2, 8, Pl. 1
57	Diamond Valley	1395919116023801		Siri Spring	39.9885	116.0448	5,810	Qm	2
58	Diamond Valley	1400911116004701	I	³ 26/53-8a	40.1531	116.0131	6,291	Qw	2, 8
59	Northern Little Smoky Valley	1391624116020501		Fish Springs complex south orifice	39.2733	116.0348	6,051	Qw	2, 8, Pl. 1
60	Northern Little Smoky Valley	1391638116021601		Fish Springs complex west orifice	39.2769	116.0391	6,054	Qw	2, 8, Pl. 1
61	Northern Little Smoky Valley	1391645116020501		Fish Springs complex north orifice	39.2791	116.0347	6,053	Qw	2, Pl. 1
62	Pine Valley	1395412116081601			39.9034	116.1379	6,513	Qm, Qw	2, 8, Pl. 1
II atitu	II officide Tomericale and altitude values are from the USCS Mational Water I		formation System (http://waterdata	usas anu/muis)					

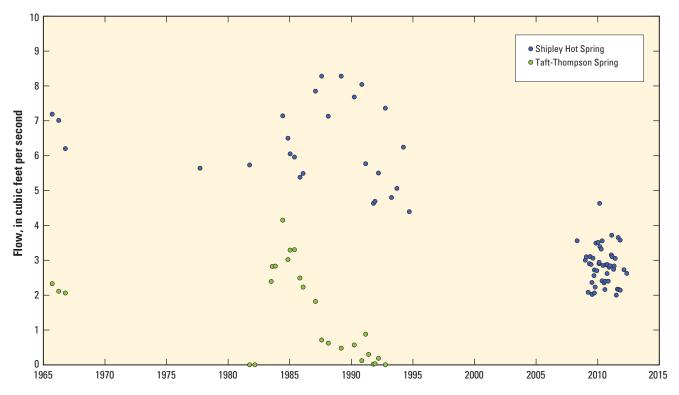
¹Latitude, longitude, and altitude values are from the USGS National Water Information System (http://waterdata.usgs.gov/nwis).

²Latitude, longitude, and altitude values are from the State of Nevada Division of Water Resources Database (http://water.m.gov/data/streamflow).

³Site name published *in* Harrill, J. 1968, Hydrologic response to irrigation pumping in Diamond Valley, Eureka and Elko Counties, Nevada, 1950–65: State of Nevada, Department of Conservation and Natural Resources, Water Resources Bulletin 35, 85 p. (*http://images.waternw.gov/images/publications/water%20resources%20bulletins/Spdf*).

JA1082




Figure 6. Water-level change in selected wells in the Diamond Valley flow system, central Nevada, 1950–2012.

JA1083 SE ROA 770 Water-level declines were observed from 2005 to 2012 in southern Diamond Valley (sites 228 and 246, fig. 6). Although the direction of groundwater flow in Diamond Valley in 2012 was similar to that in 2005, as much as 21 ft of decline was observed in the southern part of Diamond Valley during that 7-year interval (2005–12). A groundwater divide has formed between the area of natural discharge in the north part of Diamond Valley and the area of groundwater development in the south since Harrill's (1968) work in 1966. The groundwater divide has migrated northward since 2005, and its eastwest extent has decreased notably (site 321; plate 1; fig. 6). This migration indicates that the cone of depression caused by groundwater withdrawals in southern Diamond Valley expanded radially outward and had not reached equilibrium by 2012.

Since the mid-1960s, numerous springs, mostly along the western margin of the playa in the northern part of Diamond Valley, have declined in discharge or have stopped flowing entirely. Exact timing of the spring-flow decline is mostly unknown. Limited flow measurements at Taft-Thompson Spring (site 53; fig. 2; table 4), along the eastern margin, and at Shipley Hot Spring (site 56; fig. 2; table 4), along the western margin, indicated large flow declines took place in the mid-1980s to early 1990s (fig. 7). Spring-flow measurements collected in 1965–68 at five major springs (sites 53–57; fig. 2; table 4) in northern Diamond Valley ranged from 0.6 to

6.8 cfs. By 2011–12, only Shipley Hot Springs continued to flow, but only at nearly half the flow rate measured in 1990. Observed decreases in spring discharge along the east and west margins of the playa in the northern part of Diamond Valley, in part, could have been induced by groundwater withdrawals in the south. Finger-like zones of relatively more transmissive basin-fill deposits along the west and east sides of Diamond Valley (Harrill, 1968) could provide an avenue for groundwater withdrawals in southern Diamond Valley to propagate northward and affect spring discharge in northern Diamond Valley.

Additional water-level data collected since 2005 and more accurate land-surface altitudes at selected well sites were used to improve estimates of groundwater flow between basins. Water-level data in the area between Kobeh and Diamond Valleys north of Whistler Mountain (sites 166, 173, 184, 269; fig. 5; table 5) indicated no groundwater flow across this boundary. Recent water-level altitudes in northern Little Smoky Valley, southeast of Antelope Valley, were as much as 200 ft lower than water-level altitudes in the southern part of Antelope Valley (sites 94, 96, 97, 335, 337, 338; fig. 5; table 5). This difference in water-level altitude supports an inference by Rush and Everett (1966) that groundwater potentially flows eastward from the southern part of Antelope Valley through carbonate rocks of the southern Fish Creek Range and could be, in part, the source of flow at Fish Creek Springs (site 59–61; fig. 2; table 4), a regionally discharging

Figure 7. Miscellaneous spring-discharge measurements for Shipley Hot Springs and Taft-Thompson Spring, 1965–2012, Diamond Valley flow system, central Nevada. Spring discharge measurements from 2008 to 2012 were obtained from the Nevada Division of Water Resources (2013).

JA1084 SE ROA 771

water quality; Pl., Plate; ---, no data; Qw. [Latitude and longitude values are in the North American Datum 1983. Altitude values are in the North American Vertical Datum 1988. mm/dd/yyyy, month/day/year; BLS, below land surface; WI, water level]

1 3	e	U.S. Geological Survey station identifier	Nevada State station identifier	Other station identifier	Nevada State well log number	Latitude (degrees)	Longitude (degrees)	Land-surface altitude (feet)		= = = = =		Water level BLS ¹ (feet)	Water level Date Av BLS ¹ measured Av (feet) (mm/dd/yyyy) (1.26.4 111,000,0010
63	Southern Monitor Valley	2383740116434301			35913	38.6277	116.7295	7,095		300	300 166.4	166.4	
6	Southern Monitor Valley	² 384005116480101	I		I	38.6694	116.782	7,031		136	136 99.13		99.13
65	Southern Monitor Valley	2384320116443700				38.7222	116.7445	6,895					— — — Qw
99	Southern Monitor Valley	2384354116450201	1		I	38.7241	116.7465	6,894		13	13 3.21	3.21	
67	Southern Monitor Valley	2384524116444001	I		I	38.7566	116.7454	6,873			— 3.82	3.82 04/19/2012	
68	Southern Monitor Valley	2384730116481000				38.7916	116.8037	6,923	I	I			Qw
69	Southern Monitor Valley	2384736116481801	I		I	38.7949	116.8034	6,932	154		4 49.37	49.37	
70	Southern Monitor Valley	2384926116474501			I	38.823	116.7951	6,850	30		20.61		20.61 04/19/2012 Qw, WI
71	Southern Monitor Valley	2385220116435500	I		I	38.8687	116.7132	6,809	4,353		I		— — Qw
72	Southern Monitor Valley	2385229116450501			23482	38.8747	116.7523	6,819	380		15.18		15.18 04/19/2012 WI
73	Southern Monitor Valley	2385819116462301	I		I	38.8816	116.772	6,943	142		138.95		138.95 04/19/2012 WI
74	Southern Monitor Valley	2385600116425700				38.9333	116.7167	6,800					— — Qw
75	Northern Monitor Valley	2390150116403801	I		I	39.0308	116.6792	6,810	192		79.46		79.46 04/19/2012 Qw, WI
76	Northern Monitor Valley	2390438116394301			I	39.078	116.667	6,754	169		76.99		76.99 11/30/2012 WI
LL	Northern Monitor Valley	2390608116364901	I	I	4939	39.1047	116.6117	6,700	350		6.65	6.65 04/19/2012	
78	Northern Monitor Valley	2391058116385501	I		I	39.1835	116.6509	6,549	182		118.72		118.72 04/19/2012 WI
79	Northern Monitor Valley	² 391147116374101	I	I	95678	39.1905	116.6401	6,518	180		99.64	99.64 04/19/2012	
80	Northern Monitor Valley	2391503116401002			66124	39.251	116.6698	6,458	105		60.32		60.32 07/25/2006 W1
∞ JA1	Northern Monitor Valley	2391503116401001	I	⁴ 16/47-4d1	I	39.251	116.6698	6,458	64				— — Qw, W1
82	Northern Monitor Valley	2391843116364201				39.3119	116.6126	6,684			284.07		284.07 11/30/2012 W1

18 Budgets and Chemical Characterization of Groundwater for the Diamond Valley Flow System, Central Nevada, 2011–12

panu
Contir
evada.–
al Ne
, centr
system
/ flow :
I Valley
amonc
s, Di
int sites,
surme
er-mea
dwate
. groun
n for
ormatio
linfo
genera
n and g
Locatio
Table 5.

[Latitude and longitude values are in the North American Datum 1983. Altitude values are in the North American Vertical Datum 1988. mm/dd/yyyy, month/day/year; BLS, below land surface; —, no data; Qw, water quality; PL, Plate; WI, water level]

Site number	er Hydrographic area	U.S. Geological Survey station identifier	Nevada State station identifier	Other station identifier	Nevada State well log	Latitude (degrees)	Longitude (degrees)	Land-surface altitude	Well depth	Water level BLS ¹	Date	Available data	Figure(s)
83	Northern Monitor Valley	2391951116413301	I	I		39.3305	116.694	(1 ce t) 6,386		77.5	11/30/2012	WI	5, Pl. 1
28	Northern Monitor Valley	2392445116414802	I	⁴ 18/47-20a1	I	39.4124	116.6976	6,321	1	L	I	Qw	5, 8
85	Northern Monitor Valley	² 392445116414801	I	I	I	39.4126	116.6971	6,326.37	1	92.9	04/19/2012	IM	5, Pl. 1
86	Northern Monitor Valley	2392654116421401	140A N18HE47 08BBDC1	I	I	39.4483	116.704	6,310	108	85.88	04/19/2012	WI	5, Pl. 1
87	Antelope Valley	2392445116414800	I	⁴ 18/51-30b1		39.4075	116.2789	6,177			I	Qw	5, 8
88	Antelope Valley	2391114116185101	I			39.1963	116.3138	6,454.4	174	123.82	04/20/2012	Qw, WI	5, 8, Pl. 1
89	Antelope Valley	2391330116184101	I		21374	39.2241	116.3122	6,389.6	95	62.66	04/20/2012	ΜΙ	5, Pl. 1
90	Antelope Valley	2391342116194401	Ι			39.2268	116.3293	6,437.7	190	109.29	04/20/2012	Qw, WI	5, 8, Pl. 1
91	Antelope Valley	2391356116220801	Ι			39.2318	116.3583	6,540.3		210.89	04/20/2012	ΜΙ	5, Pl. 1
92	Antelope Valley	2391601116213201	Ι			39.2668	116.3597	6,499.5		170.56	04/20/2012	[W]	5, Pl. 1
93	Antelope Valley	2391626116155902	Ι		7232	39.2716	116.2626	6,325.7	105	27.55	04/20/2012	ΜΙ	5, Pl. 1
94	Antelope Valley	2391835116163701	I		212	39.312	116.2241	6,406.3	272	158.37	04/20/2012	W1	5, Pl. 1
95	Antelope Valley	2391855116191501	Ι	I		39.3172	116.32	6,412	160	134.03	04/20/2012	ΜΙ	5, Pl. 1
96	Antelope Valley	2391935116144901	Ι			39.327	116.2455	6,346.3	186	94.97	04/20/2012	Qw, WI	5, 8, Pl. 1
76	Antelope Valley	2392016116131701			1722	39.3378	116.2224	6,339.3	116	89.9	04/20/2012	ΜΙ	5, Pl. 1
98	Antelope Valley	2392137116094901	I		211	39.3572	116.1635	6,563.1	351	320.42	04/20/2012	WI	5, Pl. 1
66	Antelope Valley	2392310116125001	Ι	⁴ 18/51-34d1		39.3861	116.2156	6,331.6	134	94.15	04/20/2012	Qw, WI	5, 8, Pl. 1
100	Antelope Valley	2392331116164201	Ι			39.392	116.2792	6,199		5.71	04/07/2011	[W]	5, Pl. 1
101	Antelope Valley	2392433116164500	I	I	Ι	39.4091	116.2801	6,174	I		I	Qw	5, 8
102	Antelope Valley	2392529116133901	Ι		1330	39.4214	116.2248	6,235.2	130	59.95	04/20/2012	W1	5, Pl. 1
103	Antelope Valley	2392716116131001				39.4545	116.2203	6,226.7		157.67	04/20/2012	[W]	5, Pl. 1
104	Antelope Valley	2392847116143901	I		I	39.4797	116.2442	6,198.9	160	129.32	04/20/2012	ΜΙ	5, Pl. 1
105	Stevens Basin	2392827116060401			I	39.4741	116.102	7,113	540	472.3	07/07/1983	M	5, Pl. 1
106	Kobeh Valley	2392619116345401	I		I	39.4386	116.5828	6,457.6		173.42	04/19/2012	ΜΙ	5, Pl. 1
107	Kobeh Valley	2392703116380401	Ι			39.4582	116.6254	6,301	176	87	04/19/2012	ΜΙ	5, Pl. 1
108	Kobeh Valley	2392754116213201	Ι	I	I	39.462	116.3597	6,309.7	167	159.87	04/19/2012	W1	5, Pl. 1
J ¹⁰⁹	Kobeh Valley	2392750116251001	I	I	9651	39.464	116.4204	6,602.8	128	104.32	12/11/2012	ΜΙ	5, Pl. 1
011 A 1	Kobeh Valley	2392811116340201			I	39.4696	116.5682	6,344	146	133.85	11/29/2012	W1	5, Pl. 1
∃ 08	Kobeh Valley	2392821116425401	139 N19 E47 31AADC1			39.4724	116.7155	6,313.1		98.9	04/19/2012	W1	5, Pl. 1
6	Kobeh Valley	2392800116380001	139 N19 E47 36BBBA1		7146	39.4753	116.6371	6,264.1	102	51.82	04/19/2012	WI	5, Pl. 1

Introduction 19

Plate	
Pl., I	
lity;	
c qua	
vateı	
JW, V	
ita; C	
io da	
, n	
ace;	
surfa	
and	
ow]	
i, bel	
BLS	
ear;	
lay/y	
nth/c	
IOUI	
yyy,	
d/bb	
mm/	
988.	
m 16	
Datu	
ical	
Vert	
ican	
mer	
rth A	
No!	
n the	
are i	
lues	
e val	
ltitude	
⊴	
1983	
tum	
n Da	
rica	
Ame	
orth	
le N	
in tł	
s are	
alues	
dev	
ngitu	
d lor	[lav:
le an	ter le
atituc	, wai
[La	M

Site number	r Hydrographic area	U.S. Geological Survey station identifier	Nevada State station identifier	Other station identifier	Nevada State well log number	Latitude (degrees)	Longitude (degrees)	Land-surface altitude (feet)	Well depth (feet)	Water level BLS ¹ (feet)	Date measured (mm/dd/yyyy)	Available data	Figure(s)
113	Kobeh Valley	2392849116405701		I	I	39.4798	116.6857	6,282.08	150	67.4	04/19/2012	ΜΙ	5, Pl. 1
114	Kobeh Valley	2392934116231001		I	9662	39.4927	116.387	6,272.59	157	126.64	04/18/2012	WI	5, Pl. 1
115	Kobeh Valley	2392938116403301	139 N19 E47 21DADD1	I	63775	39.4938	116.6767	6,277	300	71.9	04/19/2012	ΜΙ	5, Pl. 1
116	Kobeh Valley	2392956116332201	139 N19 E48 22BDDB1		I	39.4987	116.5569	6,251.58		54.22	04/19/2012	Qw, WI	5, 8, Pl. 1
117	Kobeh Valley	2393003116390801	139 N19 E47 23BCAA1	I	27856	39.5008	116.6531	6,261	240	59	04/19/2012	WI	5, Pl. 1
118	Kobeh Valley		³ 139 N19 E49 30AA 1		4893	39.5015	116.4906	6,259	223	102.5	04/19/2012	Wl	5, Pl. 1
119	Kobeh Valley	2393022116414201	139 N19 E47 16CD 1		23278	39.5058	116.6892	6,307	320	75.3	04/19/2012	Qw, WI	5, 8, Pl. 1
120	Kobeh Valley	2393041116403101	139 N19 E47 15CBBB1	I	12850	39.5113	116.6762	6,304	247	92.8	04/19/2012	Μ	5, Pl. 1
121	Kobeh Valley	2393043116133201	I		104186	39.5118	116.2254	6,312.8	331	227.4	04/16/2012	Qw, WI	5, 8, Pl. 1
122	Kobeh Valley	2393058116244501	Ι		I	39.5148	116.4131	6,260.1	124	103.45	04/18/2012	Μ	5, Pl. 1
123	Kobeh Valley	393123116300401	³ 139 N19 E49 18CABA1		5515	39.523	116.502	6,201	06	27.3	04/19/2012	ΙM	5, Pl. 1
124	Kobeh Valley	I	³ 139 N19 E50 17DAAB1		9662	39.5239	116.3608	6,102.41	157	Flowing	03/01/2012	Μ	5, Pl. 1
125	Kobeh Valley	² 393129116212800	Ι		I	39.5242	116.36	6,110				Qw	5, 8
126	Kobeh Valley	393129116212901	³ 139 N19 E50 16BCCC1	I		39.5244	116.3591	6,106		Flowing	04/19/2012	Qw, WI	5, 8, Pl. 1
127	Kobeh Valley	393133116212201	³ 139 N19 E50 16BCCA1		I	39.5256	116.3573	6,098.64		Flowing	03/01/2012	Μ	5, Pl. 1
128	Kobeh Valley	2393155116411801	139 N19 E47 09AD 1			39.5265	116.678	6,359	190	141.2	04/19/2012	Μ	5, Pl. 1
129	Kobeh Valley	2393155116310301		Ι	I	39.5305	116.5166	6,184.1		8.62	04/20/2012	WI	5, Pl. 1
130	Kobeh Valley	2393214116212401			114075	39.5372	116.3574	6,098.6	35	8.66	04/18/2012	WI	5, Pl. 1
131	Kobeh Valley	2393223116284801		Ι	I	39.5395	116.481	6,168.5		2.32	04/20/2012	WI	5, Pl. 1
132	Kobeh Valley	2393246116280501		I	I	39.5459	116.4688	6,178.38		12.92	04/19/2012	Qw, WI	5, 8, Pl. 1
133	Kobeh Valley	2393434116063801	Ι	I	47428	39.576	116.1105	6,080.47	306	86.22	04/16/2012	Μ	5, Pl. 1
134	Kobeh Valley	2393446116064301	I	I		39.5794	116.1128	6,005.7		8.16	04/16/2012	WI	5, Pl. 1
135	Kobeh Valley		³ 139 N20 E52 20DBBB1	I	1676	39.5808	116.1352	6,043	120	Flowing	03/01/2012	WI	5, Pl. 1
136	Kobeh Valley	2393453116270301		I		39.5813	116.4518	6,147.2	36	1.65	04/19/2012	ΜΙ	5, Pl. 1
137	Kobeh Valley	I	³ 139 N20 E52 17CB 1	I	9211	39.5923	116.1411	6,020	85	2.4	04/19/2012	Μ	5, Pl. 1
138	Kobeh Valley	2393542116254101	I		I	39.5948	116.4288	6,144.87	38	10.92	04/19/2012	Μ	5, Pl. 1
139	Kobeh Valley	2393545116075101	Ι		48875	39.5957	116.1318	6,039.1	110	33.13	04/16/2012	Μ	5, Pl. 1
140	Kobeh Valley	2393544116084801	139 N20 E52 17BDDA1	I	I	39.5974	116.1363	6,024.71	90	18.15	04/16/2012	Μ	5, Pl. 1
141	Kobeh Valley	I	³ 139 N20 E50 21ACCA1		I	39.5977	116.3483	6,100.3		Flowing	02/28/2012	ΜΙ	5, Pl. 1
142	Kobeh Valley	2393554116252801	I	I	107001	39.5982	116.4243	6,130.9	34	3.04	04/19/2012	WI	5, Pl. 1
143	Kobeh Valley	2393555116094801	Ι		114074	39.5987	116.1644	6,012.5	24	3.25	04/17/2012	Qw, WI	5, 8, Pl.]
144	Kobeh Valley	2393558116082201	139 N20 E52 17BCAA1	I	I	39.5995	116.1404	6,019.48		12.48	04/16/2012	Μ	5, Pl. 1
145	77 1 1 X 11												

	-
	μ
	5
	÷
	5
	Ę
	¢
	191
	10
	Ê
	-
	9
	5
	2
	4
	no
	à
	6
	Ť
	- 5
ē	_
	2
	6
÷	
	č
0	6
ې	2
	v
·.	<u>_</u>
a	μ
р	:
g	5
2	d/A
<u>e</u>	Ś
2	16
_	2
g	÷
Ē	1
Ē	P
Э	4
C	>
~	NNNN/
E	- 5
ā	÷
÷	- T
S	2
6	5
~	7
3	x
õ	x
Ŧ	2
\geq	2
6	E
=	- te
g	2
>	-
	5
ć	÷
0	7
F	2
ar	5
	č
	÷Ę
	2
~	
ţ	Δn
sites, [th An
t site:	orth An
nt site:	North An
ent site:	e North An
nent site:	the North An
rment site:	n the North An
urment site:	in the North An
surment site:	re in the North An
asurment site:	are in the North An
easurment site	es are in the North An
measurment site:	lines are in the North An
measurment site:	alues are in the North An
er-measurment site:	values are in the North An
ter-measurment site:	
/ater-measurment site	
water-measurment site:	
dwater-measurment s	
dwater-measurment s	
dwater-measurment s	
roundwater-measurment s	983 Altitude values are in the North An
roundwater-measurment s	
oundwater-measurment s	
roundwater-measurment s	im 1983 Altitude
roundwater-measurment s	atum 1983 Altitude
roundwater-measurment s	im 1983 Altitude
for groundwater-measurment s	Datum 1983 Altitude
n for groundwater-measurment s	an Datum 1983 Altitude
n for groundwater-measurment s	an Datum 1983 Altitude
n for groundwater-measurment s	nerican Datum 1983 Altitude
rmation for groundwater-measurment s	an Datum 1983 Altitude
mation for groundwater-measurment s	American Datum 1983 Altitude
formation for groundwater-measurment s	th American Datum 1983 Altitude
rmation for groundwater-measurment s	American Datum 1983 Altitude
formation for groundwater-measurment s	ith American Datum 1983 Altitude
al information for groundwater-measurment s	ith American Datum 1983 Altitude
formation for groundwater-measurment s	ith American Datum 1983 Altitude
al information for groundwater-measurment s	the North American Datum 1983 Altitude
al information for groundwater-measurment s	in the North American Datum 1983 Altitude
neral information for groundwater-measurment s	the North American Datum 1983 Altitude
general information for groundwater-measurment s	in the North American Datum 1983 Altitude
d general information for groundwater-measurment s	s are in the North American Datum 1983 Altitude
d general information for groundwater-measurment s	es are in the North American Datum 1983 Altitude
and general information for groundwater-measurment s	es are in the North American Datum 1983 Altitude
n and general information for groundwater-measurment s	s are in the North American Datum 1983 Altitude
and general information for groundwater-measurment s	values are in the North American Datum 1983 Altitude
tion and general information for groundwater-measurment s	values are in the North American Datum 1983 Altitude
ation and general information for groundwater-measurment s	tude values are in the North American Datum 1983 Altitude
cation and general information for groundwater-measurment s	nitude values are in the North American Datum 1983 Altitude
ation and general information for groundwater-measurment s	tude values are in the North American Datum 1983 Altitude
cation and general information for groundwater-measurment s	nitude values are in the North American Datum 1983 Altitude
Location and general information for groundwater-measurment s	I longitude values are in the North American Datum 1983 Altitude
Location and general information for groundwater-measurment s	and longitude values are in the North American Datum 1983 Altitude
5. Location and general information for groundwater-measurment s	e and longitude values are in the North American Datum 1983 Altitude
. Location and general information for groundwater-measurment s	and longitude values are in the North American Datum 1983 Altitude

lity; Pl., Plate; Ś day/year; vyyy, R the North American Vertu values are m Altitude 1985. Datum American
 Table 5.
 Location and general info

 [Latitude and longitude values are in the North. WI, water level]

International internatinterandome international international international i	Site	Site Ludrontranhio aroa	U.S. Geological Survey	Nevada State station	Other station	Nevada State	Latitude	Longitude	Land-surface	Well	Water level	Date	Available	Eigned e)
44 6 cooley valuey 393/451 (00020) - - 800 3 (15 / 15 / 15 / 15 / 15 / 15 / 15 / 15	numbe		station identifier	identifier	identifier	number	(degrees)	(degrees)	(feet)	(feet)	(feet)	(mm/dd/yyyy)	data	/elainfii
11 None 3990011004001 1 90005 16.866 6.117.80 2.0 6.00 9.0 16.866 6.117.80 2.0 6.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 <	146	Kobeh Valley	2393546116092301	I	I	880	39.6013	116.1508	6,013.6	132	4.87	04/16/2012	ΜI	5, Pl. 1
(a) (a) <td>147</td> <td>Kobeh Valley</td> <td>2393610116094201</td> <td>Ι</td> <td> </td> <td> </td> <td>39.6027</td> <td>116.1625</td> <td>6,015.9</td> <td> </td> <td>6.81</td> <td>04/17/2012</td> <td>ΜI</td> <td>5, Pl. 1</td>	147	Kobeh Valley	2393610116094201	Ι			39.6027	116.1625	6,015.9		6.81	04/17/2012	ΜI	5, Pl. 1
40 Koob Valuy ³⁹³⁵⁶¹¹⁶³³³⁰¹ - - 1 96123 1	148	Kobeh Valley	I	³ 139 N20 E50 18DBBD1		23425	39.6098	116.386	6,117.89	232	Flowing	02/29/2012	ΜI	5, Pl. 1
(5) (66) (39) (16.13) (17.13) (17.13) (16.14) (16.14) (16.13) (16.13) (16.13) (16.13) (16.13) (16.13) (11.13) (11.13) (16.14) (16.14) (16.13) (16.13) (16.13) (16.13) (11.13) (11.13) (11.13) (16.14) (16.13) (16.13) (16.13) (16.13) (11.13) (11.13) (11.13) (16.14) (16.13) (16.13) (16.13) (16.13) (11.13) (11.13) (11.13) (11.13) (11.13) (11.13) (11.13) (11.13) (11.13) (11.13) (11.13) (11.13) (11.13) (11.13) (11.13) (11.13)	149	Kobeh Valley	2393646116332901	I	I	I	39.6128	116.559	6,241.4		51.4	04/18/2012	ΙM	5, Pl. 1
No 130 No Delyo OCC I 130 NO PE	150	Kobeh Valley	2393711116124801	I	I	107000	39.6197	116.2133	6,051.8	43	2.04	04/16/2012	MI	5, Pl. 1
ISI Kooh Vuliy 3337711616001 - - - 9.653 16.639 6.14.65 - 10.17 0117201 158 Kooh Vuliy 3339301160500 - - - 2438 9.6635 16.838 6.08.97 10.17 0 1017201 158 Kooh Vuliy - - 139301160570 - - 2438 9.6635 16.183 6.08.97 10.17 0 1017201 158 Kooh Vuliy - - 13930211635700 - - 2635 16.175 6.165 6.165 6.165 0.13	151	Kobeh Valley	I	³ 139 N20 E49 09CC 1	I	1887	39.6214	116.4666	6,154	250	2.8	04/19/2012	MI	5, Pl. 1
S Koeh Valley 39388116 0581 - - 2.037 1.0183 6.087.9 1.00 3.44 0.117201 15.8 Koeh Valley 39389116 05501 19.01515 300 1.9 1.9389 1.010 3.48 0.117201 15.8 Koeh Valley 39389116 05501 1.9 VIES 0.867 1.65.9 0.81.7 - 3.83 0.117201 15.8 Koeh Valley 39394116 3500 - - 2.05.85 1.65.87 6.63 9.112 0.13 1.9 1.912012 15.8 Koeh Valley 39395116 3000 - - 2.238 6.15 9.16 1.10 3.15 0.11201 16.8 Koeh Valley 39395116 3000 - - 2.238 6.16 1.10 3.16 0.117201 16.8 Koeh Valley 39435116 3000 - - - 2.05 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1	152	Kobeh Valley	2393727116160601	1	I		39.6241	116.2692	6,144.65	I	10.17	04/17/2012	Μ	5, Pl. 1
15.4 16.4eb Valley 39389011610550 19.7125136DCDB2 - 2463 616.436 610.8307 81.3 81.46 0117201 15.5 Keeb Valley 39382011610570 1.39.711513611 - - - 39.661 16.1038 6.1037 - 2.39 0117201 15.5 Keeb Valley 39393711610000 - - - 39.661 16.1734 6.19,07 5.1 19. 10192012 15.8 Keeb Valley 39393711610000 - - - 39.665 116.173 6.19,07 5.0 101 10172012 16.8 Keeb Valley 39393711610300 19.8 2.39405161330 19.8 116.172 6.19,07 5.0 101 10172012 16.8 Keeb Valley 3940516161010 18.9 10.8 16.1678 6.19,07 5.0 10173012 10172012 16.8 Keeb Valley 394011610101 19.8 1016614 39.666 116.172 6.19,07 6.19 01172	153	Kobeh Valley	2393808116105801	I	I	24287	39.6354	116.1828	6,087.9	1,100	37.46	04/17/2012	MI	5, Pl. 1
(5) (6) (3) (1) <td>154</td> <td>Kobeh Valley</td> <td>2393809116105501</td> <td>139 N21 E51 36DCDB2</td> <td>I</td> <td>24638</td> <td>39.6356</td> <td>116.1828</td> <td>6,088.97</td> <td>842</td> <td>38.46</td> <td>04/17/2012</td> <td>MI</td> <td>5, Pl. 1</td>	154	Kobeh Valley	2393809116105501	139 N21 E51 36DCDB2	I	24638	39.6356	116.1828	6,088.97	842	38.46	04/17/2012	MI	5, Pl. 1
(5) (bob Walley) () ⁻¹ () ⁻¹ (155	Kobeh Valley	2393829116322401	I			39.6412	116.5409	6,210.73		24.89	04/18/2012	Μ	5, Pl. 1
(5) (6) (3) <td>156</td> <td>Kobeh Valley</td> <td>I</td> <td></td> <td> </td> <td> </td> <td>39.6595</td> <td>116.2085</td> <td>6,145</td> <td> </td> <td>76.3</td> <td>04/19/2012</td> <td>MI</td> <td>5, Pl. 1</td>	156	Kobeh Valley	I				39.6595	116.2085	6,145		76.3	04/19/2012	MI	5, Pl. 1
18 Koeh Valley 2393411610401 — 24286 39.6646 116.1784 6.19.62 6.30 8.102 6.17.021 18 Koeh Valley 23935711610001 — — 2394361163401 — 2394361163401 — 2394361163401 — 239436163340 — 239436163340 — 239436163340 130 23139 23211 239436163340 130 23139 23211 2313 23211 23943 2313 2313 23211 23943 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314	157	Kobeh Valley	2393942116245701	Ι			39.6615	116.4168	6,190.7	45	10.15	04/18/2012	Μ	5, Pl. 1
158 Koeh Valley 33935711610300 $$ $$ $$ $$ $$ 168 Koeh Valley 33940511618340 $$ $$ 39.673 16.173 6.235 10.9 7.33 0.182012 168 Koeh Valley 3.9405611618340 9.8712491627380 198 11.6173 6.2351 50.9 11.93 0.1820127390 168 Koeh Valley 3.941251162330 1 1.99 1.63113 6.2351 10.9 17.367 0.4182012 168 Koeh Valley 3.941251162390 $$ 1.99 1.617312 6.2351 10.9172012 0.4182012 168 Koeh Valley 3.941251162390 $$ $$ 3.9731 116.17202 6.2635 10.172012 168 Koeh Valley 3.94251163290 $$ $$ 3.9731 116.172 6.2635 10.172012 168 Koeh Valley $$ $$ 3.9731 116.1726 6.9317	158	Kobeh Valley	2393954116104001	I	Ι	24286	39.6646	116.1784	6,149.62	630	81.02	04/17/2012	Qw, WI	5, 8, Pl. 1
(6) (bobh Valley) 39405611618340 (159	Kobeh Valley	2393957116103001	Ι	Ι	I	39.6655	116.1792	6,320	201		I	Qw, WI	5, 8
	160	Kobeh Valley	2394036116183401		I		39.6772	116.3113	6,227.1	139	37.03	04/18/2012	Qw, WI	5, 8, Pl. 1
(a) (a) <td>161</td> <td>Kobeh Valley</td> <td>2394059116282901</td> <td>139 N21 E49 16CCBB1</td> <td>I</td> <td> </td> <td>39.6815</td> <td>116.4768</td> <td>6,235.1</td> <td>50</td> <td>41.63</td> <td>04/18/2012</td> <td>Μ</td> <td>5, Pl. 1</td>	161	Kobeh Valley	2394059116282901	139 N21 E49 16CCBB1	I		39.6815	116.4768	6,235.1	50	41.63	04/18/2012	Μ	5, Pl. 1
(6) (6) (2) <td>162</td> <td>Kobeh Valley</td> <td> </td> <td>³139 N21 E51 16BCDB1</td> <td>I</td> <td>106644</td> <td>39.6861</td> <td>116.2476</td> <td>6,269.99</td> <td>1,000</td> <td>173.67</td> <td>04/18/2012</td> <td>Μ</td> <td>5, Pl. 1</td>	162	Kobeh Valley		³ 139 N21 E51 16BCDB1	I	106644	39.6861	116.2476	6,269.99	1,000	173.67	04/18/2012	Μ	5, Pl. 1
(64)(56)(53)(53)(53)(53)(53)(53)(64)(717012(65)(73)(73)(73)(73)(73)(73)(71)(71)(71)(66)(73)(73)(73)(73)(73)(73)(74)(71)(71)(66)(74)(73)(73)(73)(73)(73)(74)(71)(71)(67)(74)(74)(74)(74)(74)(74)(74)(71)(71)(74)(75)(74)(74)(74)(74)(74)(74)(74)(74)(74)(74)(74)(75)(74)(74)(74)(74)(74)(74)(74)(74)(74)(74)(74)(75)(74)(74)(74)(74)(74)(74)(74)(74)(74)(74)(74)(75)(74)(74)(74)(74)(74)(74)(74)(74)(74)(74)(74)(74)(75)(74	163	Kobeh Valley	2394125116223801	I	I	13994	39.69	116.3784	6,225.12	124	59.11	04/18/2012	Μ	5, Pl. 1
165Kobeh Valley 3 94,321116113201 $ 3$,706 16 ,161,91 6 ,206.5 $ 204.15$ 6401.5 166Kobeh Valley $ 3$,19 1 ,11522 05DDBA1 $ 0$ 00760 3 ,7097 116 ,1365 $6.665.21$ 450 $31,95$ 05702012 167Kobeh Valley 2 94327110235401 $ 0$ 10032 3 ,7734 $116,395$ $6.605.21$ 450 $33,73$ 05702012 168Kobeh Valley 2 394327110239901 $ 07724$ $116,395$ $6.409.9$ 233 05702012 169Kobeh Valley 2 394327110239901 $ 07724$ $116,397$ $6.409.9$ 233 07011981 170Kobeh Valley $ ^{3}$ 39 $2392255332BCAD2$ $ 07732$ $116,4951$ $6.31.88$ 533.71 01071881 171Kobeh Valley $ ^{3}$ 39 $2392255332BCAD2$ $ 07732$ $116,2971$ $6.31.88$ 533.71 01071891 171Kobeh Valley $ ^{3}$ 39 $1265732BCAD2$ 3 39732 $116,2971$ $6.31.88$ 233.71 04182012 171Kobeh Valley $ ^{3}$ 39 $2392255132BCAD2$ $ 07532$ $116,2971$ $6.31.88$ 233.71 01071891 171Kobeh Valley $ ^{3}$ 39 $239225332BCAD2$ $ 07532$ $116,2972$ $6.406.4$ 909 20172 171 <t< td=""><td>164</td><td>Kobeh Valley</td><td>2394216116101701</td><td> </td><td>I</td><td> </td><td>39.7041</td><td>116.1722</td><td>6,263.6</td><td> </td><td>203.61</td><td>04/17/2012</td><td>Μ</td><td>5, Pl. 1</td></t<>	164	Kobeh Valley	2394216116101701		I		39.7041	116.1722	6,263.6		203.61	04/17/2012	Μ	5, Pl. 1
(6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (7) (6) (7) (6) (7) (6) (7) <td>165</td> <td>Kobeh Valley</td> <td>2394231116113201</td> <td>Ι</td> <td>I</td> <td>I</td> <td>39.7086</td> <td>116.1931</td> <td>6,290.5</td> <td>I</td> <td>204.15</td> <td>04/17/2012</td> <td>ΜI</td> <td>5, Pl. 1</td>	165	Kobeh Valley	2394231116113201	Ι	I	I	39.7086	116.1931	6,290.5	I	204.15	04/17/2012	ΜI	5, Pl. 1
$\left 67 \right \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	166	Kobeh Valley		³ 139 N21 E52 05DDBA1	Ι	107060	39.7097	116.1365	6,605.21	450	311.95	05/30/2012	Μ	5, Pl. 1
168 Kobeh Valley ² 3432711629301 — — — 39.721 116.4951 6.353 201 142 01/01/081 169 Kobeh Valley — 3 3 7.32 16.4951 6.381.88 585 3.7.11 0	167	Kobeh Valley	2394327116235401	I	Ι	11032	39.724	116.3992	6,409.9	289	233.7	05/20/2011	Μ	5, Pl. 1
169 Kobeh Valley - ³ 19 N22 E51 323 CAD - 165 73 165 <	168	Kobeh Valley	2394327116293901	I	Ι	I	39.7241	116.4951	6,353	201	142	01/01/1981	Wl	5, Pl. 1
170 Kobeh Valley - ³ 19 N22 E51 232 BCAD2 - 105302 39.7312 116.2677 6.381.88 230 34.07 0418/2012 171 Kobeh Valley - ³ 19 N22 E51 314 BCU - 107302 39.7339 116.2792 6.406.4 900 204.8 09/05/2012 172 Kobeh Valley - ³ 139 N22 E51 314 BCU - 107059 39.7339 116.2791 6.406.4 900 204.8 09/05/2012 173 Kobeh Valley - ³ 139 N21 E51 314 NC1 - 107059 39.7339 116.1469 6.746.86 378 05/02.02 174 Kobeh Valley -	169	Kobeh Valley		³ 139 N22 E51 32BCAD1	Ι	105125	39.7312	116.2677	6,381.88	585	33.71	09/05/2012	MI	5, Pl. 1
I1 Kobeh Valley - ³ 19 N22 E51 31ABCC1 - 107126 39.7338 116.2792 6,406.4 900 204.8 0905/2012 I72 Kobeh Valley - ³ 19 N22 E51 31ABCD1 - 106690 39.7339 116.2791 6,406.67 999 201.54 06/05/2012 I73 Kobeh Valley - ³ 139 N21H52 05BBCC1 - 107059 39.7339 116.1469 6,746.86 378 211.89 05/30/2012 I74 Kobeh Valley - - 3139 N21H52 05BBCC1 - 107059 39.7339 116.165 6,746.86 378 211.89 05/30/2012 I75 Kobeh Valley - - 207.48.36a1 - 166.30 39.7352 116.5219 6,411.88 05/376 05/312 I76 Kobeh Valley - - 106.530 39.7352 116.2219 6,411.88 089 208.74 06/06/2012 I76 Kobeh Valley - <	170	Kobeh Valley			I	105302	39.7312	116.2677	6,381.88	230	34.07	04/18/2012	ΜΙ	5, Pl. 1
172 Kobeh Valley - ³ 139 N22 E51 31ABCB1 - 106690 37339 116.2791 6,406.67 999 201.54 06/06/2012 173 Kobeh Valley - ³ 139 N21HE52 05BBCC1 - 107059 39.7339 116.1469 6,746.86 378 211.89 05/30/2012 174 Kobeh Valley ² 394406116310201 - - 422/48.36a1 - 39.7347 116.52 6,501 -	171	Kobeh Valley			I	107126	39.7338	116.2792	6,406.4	006	204.8	09/05/2012	ΜΙ	5, Pl. 1
173 Kobeh Valley	172	Kobeh Valley	I			106690	39.7339	116.2791	6,406.67	666	201.54	06/06/2012	ΜI	5, Pl. 1
174 Kobeh Valley ²³⁹⁴⁴⁰⁶¹¹⁶³¹⁰²⁰¹ - ^{422/48-36a1} - 39.7347 116.52 6,501 - - - - - - - - - - - - - - - - - - - 39.7347 116.52 6,501 -	173	Kobeh Valley	I	³ 139 N21HE52 05BBCC1	Ι	107059	39.7339	116.1469	6,746.86	378	211.89	05/30/2012	Μ	5, Pl. 1
175 Kobeh Valley - ³ 139 N22 E50 36A ABD1 - 106630 39.7352 116.2919 6,411.88 889 208.74 09/05/2012 176 Kobeh Valley - ³ 139 N22 E50 36A ABD2 - 107125 39.7353 116.292 6,412.07 902 209.79 06/06/2012 177 Kobeh Valley - ³ 139 N22 E50 26C BCD1 - 107627 39.7405 116.3253 6,513.45 430 71.49 06/06/2012 178 Kobeh Valley - ³ 139 N22 E50 26C BCD2 - 107628 39.7405 116.3253 6,513.45 430 71.49 06/06/2012	174	Kobeh Valley	2394406116310201	I	⁴ 22/48-36a1	I	39.7347	116.52	6,501	I		I	Qw	5, 8
176 Kobeh Valley ³ 139 N22 E50 36ABD2 107125 39.7353 116.292 6,412.07 902 209.79 06/06/2012 177 Kobeh Valley ³ 139 N22 E50 26CBCD1 107627 39.7405 116.3253 6,513.45 430 71.49 06/06/2012 178 Kobeh Valley ³ 139 N22 E50 26CBCD2 107628 39.7405 116.3253 6,513.45 430 71.49 06/06/2012	175	Kobeh Valley		³ 139 N22 E50 36AABD1	I	106630	39.7352	116.2919	6,411.88	889	208.74	09/05/2012	ΜΙ	5, Pl. 1
177 Kobeh Valley — ³ 139 N22 E50 26CBCD1 — 107627 39.7405 116.3253 6.513.45 430 71.49 06/06/2012 178 Kobeh Valley — ³ 139 N22 E50 26CBCD2 — 107628 39.7405 116.3253 6.513.45 610 152.84 06/06/2012	176	Kobeh Valley		³ 139 N22 E50 36AABD2	I	107125	39.7353	116.292	6,412.07	902	209.79	06/06/2012	Μ	5, Pl. 1
178 Kobeh Valley	177	Kobeh Valley		³ 139 N22 E50 26CBCD1		107627	39.7405	116.3253	6,513.45	430	71.49	06/06/2012	Μ	5, Pl. 1
	178	Kobeh Valley		³ 139 N22 E50 26CBCD2	I	107628	39.7405	116.3253	6,513.45	610	152.84	06/06/2012	ΜΙ	5, Pl. 1

Plate. Ь g ir: BLS helow land surf بمارا ماغم an Vertical Datum 1988 mm/dd/ are in the North An can Datum 1983 Altitude values in the North Am II atitude

Site number	Hydrographic area	U.S. Geological Survey station identifier	Nevada State station identifier	Other station identifier	Nevada State well log number	Latitude (degrees)	Longitude (degrees)	Land-surface altitude (feet)	Well depth (feet)	Water level BLS ¹ (feet)	Date measured (mm/dd/yyyy)	Available data	Figure(s)
179	Kobeh Valley	2394420116263101	I	⁴ 22/49-27d1	I	39.7422	116.4472	6,343			I	Qw	5, 8
180	Kobeh Valley		³ 139 N22 E51 30ACDC3	Ι	109889	39.7446	116.2769	6,445.63	800	114.42	09/05/2012	Wl	5, Pl. 1
181	Kobeh Valley	I	³ 139 N22 E51 30ACDC1		109890	39.7446	116.2766	6,446.78	800	97.64	05/30/2012	WI	5, Pl. 1
182	Kobeh Valley		³ 139 N22 E50 29BBCB1	I	106508	39.7484	116.3825	6,633.26	477	170.92	06/06/2012	Wl	5, Pl. 1
183	Kobeh Valley	2394514116172301	I		4274	39.7503	116.2842	6,485.3	350	136.75	04/17/2012	WI	5, Pl. 1
184	Kobeh Valley	1	³ 139 N22 E52 31ABBA1	Ι	107061	39.7509	116.1544	6,727.79	570	229.13	05/30/2012	WI	5, Pl. 1
185	Kobeh Valley	I	³ 139 N22 E51 20DDB1	I	105126	39.7526	116.2537	6,511.32	600	58.35	05/30/2012	WI	5, Pl. 1
186	Kobeh Valley	1	³ 139 N22 E51 21BCDC1	Ι	107632	39.7591	116.2483	6,568.96	1,080	76.61	05/30/2012	WI	5, Pl. 1
187	Kobeh Valley	I	³ 139 N22 E51 22BACC1	I	108050	39.762	116.2286	6,613.43	066	87.18	09/05/2012	Wl	5, Pl. 1
188	Kobeh Valley		³ 139 N22 E51 16ACCB1	Ι	108051	39.7736	116.2419	6,712.37	1,000	48.6	06/06/2012	WI	5, Pl. 1
189	Kobeh Valley	I	³ 139 N22 E50 12DABD1	I	108053	39.786	116.2926	6,771.56	378	97.94	06/06/2012	WI	5, Pl. 1
190	Kobeh Valley	1	³ 139 N22 E50 12BACC1	Ι	108052	39.7907	116.3023	6,772.96	300	80.67	06/06/2012	MI	5, Pl. 1
191	Kobeh Valley	I	³ 139 N22 E51 02CCDD1	I	99128	39.794	116.2102	6,921.41	80	15.59	05/30/2012	WI	5, Pl. 1
192	Diamond Valley	2393030115573000	I	I	I	39.5083	115.9592	6,549	I		I	Qw	5, 8
193	Diamond Valley	² 393244116024401	I	I	104185	39.5456	116.0455	6,211	338	255.23	12/14/2012	Qw, WI	5, 8, Pl. 1
194	Diamond Valley	393327116013601	³ 153 N20 E53 32BDCC1	I	6312	39.5533	116.0284	6,049.87	218	153.5	04/11/2012	WI	5, Pl. 1
195	Diamond Valley	393332116015001	³ 153 N20 E53 32BBBA1		9244, 24576	39.5588	116.032	6,023.62	240	126.5	04/11/2012	WI	5, Pl. 1
196	Diamond Valley	393343116023001	³ 153 N20 E53 30DCCC1	Ι	7352	39.5599	116.0434	6,036.75	210	129.65	04/11/2012	Wl	5, Pl. 1
197	Diamond Valley	2393353116023001	Ι	⁵ 20/53-30db	Ι	39.5663	116.0437	6,009	Ι	I	Ι	Qw, WI	5, 8
198	Diamond Valley	2393400116023101	I	I	23722	39.5664	116.0429	6,006.3	176	108.7	03/27/2012	Wl	5, Pl. 1
199	Diamond Valley	393408116000301	³ 153 N20 E53 28ACCD1	I	6522	39.5674	115.9973	6,023.62		237.1	04/11/2012	WI	5, Pl. 1
200	Diamond Valley	I	³ 153 N20 E53 30ABCC2		64518	39.5708	116.0434	5,990.81	170	8.66	04/11/2012	M	5, Pl. 1
201	Diamond Valley	2393422116042501	Ι		108033	39.5731	116.0727	5,983.8	181	44.52	03/27/2012	Qw, WI	5, 8, Pl. 1
202	Diamond Valley	2393422116042502	I	I	108033	39.5731	116.0727	5,983.8	101	44.36	03/27/2012	Qw, WI	5, 8, Pl. 1
203	Diamond Valley	393440116001901	³ 153 N20 E53 21CDDC1	I	7993	39.5746	116.0048	5,980.97	248	188.4	04/11/2012	M	5, Pl. 1
204	Diamond Valley	2393500115580500	I	I	I	39.5833	115.9689	6,025	I		I	Qw	5,8
205	Diamond Valley	Ι	³ 153 N20 E53 20BC 01	Ι	113748	39.585	116.0288	5,954	425	162.3	04/11/2012	WI	5, Pl. 1
206	Diamond Valley	2393509116000301	I	⁵ 20/53-21ad	6116	39.5858	116.0017	5,979.04	213	I	I	Qw, WI	5, 8
207	Diamond Valley	393519115592401	³ 153 N20 E53 15CDDD1		8231	39.5885	115.9909	5,997.38	398	218	04/11/2012	WI	5, Pl. 1
208	Diamond Valley	² 393536116015801	I	⁵ 20/53-17cc	8721	39.5891	116.037	5,952	175		I	Qw, WI	5,8
209	Diamond Valley	I	³ 153 N20 E53 10DDDD2		103683	39.603	115.9814	5,958	340	176.5	04/11/2012	WI	5, Pl. 1
210	Diamond Valley	393623115593301	³ 153 N20 E53 10CACC1	I	7402	39.6066	115.9951	5,944.88	214	161.04	04/11/2012	WI	5, Pl. 1
211	Diamond Vallay		3160 NTOD TEO 10D A COT				115 0051	0000			0.000		

[Latitude and longitude values are in the North American Datum 1983. Altitude values are in the North American Vertical Datum 1988. mm/dd/yyyy, month/day/year; BLS, below land surface; —, no data; Qw, water quality; PL, Plate; WI, water level]

Site number	tr Hydrographic area	U.S. Geological Survey station identifier	Nevada State station identifier	Other station identifier	Nevada State well log number	Latitude (degrees)	Longitude (degrees)	Land-surface altitude (feet)	Well depth (feet)	Water level BLS ¹ (feet)	Date measured (mm/dd/yyyy)	Available data	Figure(s)
212	Diamond Valley	393705115574201	³ 153 N20 E53 02DDD1		8114	39.6174	115.9628	5,974.41	250	183.35	04/17/2012	Μ	5, Pl. 1
213	Diamond Valley	2393710115584000	Ι		I	39.6194	115.9787	5,942				Qw	5, 8
214	Diamond Valley	2393714116000301		⁵ 20/53- 4dd	6152	39.621	116.0048	5,932	177	l	l	Qw, WI	5,8
215	Diamond Valley	1	³ 153 N20 E53 04DDBB2	I	90746	39.6215	116.0048	5,934	460	142.3	04/11/2012	M	5, Pl. 1
216	Diamond Valley	2393720115585000	I	I	I	39.6221	115.9814	5,942			I	Qw	5, 8
217	Diamond Valley	2393724115580201	Ι	⁵ 21/53-2ac		39.628	115.9673	5,936	220			Qw, WI	5, 8
218	Diamond Valley	393731115570301	³ 153 N20 E53 01BDDA2	⁵ 20/53- 1ac	5542	39.6308	115.9548	5,954.72	173	168.1	04/01/2012	Qw, WI	5, 8, Pl. 1
219	Diamond Valley	2393814115565700	Ι		I	39.6371	115.9501	5,950				Qw	5, 8
220	Diamond Valley	2393818116002401	I	⁵ 21/53-33da	6156	39.6383	116.0076	5,931.03	112		I	Qw, WI	5,8
221	Diamond Valley	I	³ 153 N21 E53 34DDB 02		71737	39.6398	115.988	5,924	236	139.67	04/11/2012	M	5, Pl. 1
222	Diamond Valley	393844115570601	³ 153 N21 E53 36AD 1	I	6550	39.6435	115.9471	5,948.16	300	163.1	04/11/2012	W1	5, Pl. 1
223	Diamond Valley	2393842115572201	Ι	⁵ 21/53-36ac	7286	39.6449	115.9514	5,942.14	300			Qw, WI	5, 8
224	Diamond Valley		³ 153 N21 E53 35BDBB2		76990	39.6469	115.9795	5,921	362	139.3	04/11/2012	ΜΙ	5, Pl. 1
225	Diamond Valley	1	³ 153 N21 E53 33AACC2	I		39.6471	116.007	5,928		140	04/11/2012	M	5, Pl. 1
226	Diamond Valley	2393915116011001	I	⁵ 21/53-28cc	7652	39.6541	116.0159	5,946	186		I	Qw, WI	5,8
227	Diamond Valley	2393928116051301	Ι	I		39.6577	116.087	6,426		4.55	05/22/2012	M	5, Pl. 1
228	Diamond Valley	393942116005401	³ 153 N21 E53 28BBDD1	I	8151	39.6611	116.0161	5,944.88	185	175.1	04/11/2012	WI	5, Pl. 1
229	Diamond Valley		³ 153 N21 E53 27ACAA3		86190	39.6615	115.989	5,912	355	137.57	04/11/2012	WI	5, Pl. 1
230	Diamond Valley	393956115571101	³ 153 N21 E53 24CDDD1	I	7941	39.6655	115.9556	5,918.64	280	146.8	04/11/2012	WI	5, Pl. 1
231	Diamond Valley	393958115552701	³ 153 N21 E54 20CCC1		6633	39.6663	115.9264	5,935.04	230	166.3	04/12/2012	WI	5, Pl. 1
232	Diamond Valley		³ 153 N21 E53 21DCAA2	I	7208, 109421	39.6688	116.0067	5,919	280	144.2	04/11/2012	WI	5, Pl. 1
233	Diamond Valley	393956115581801	³ 153 N21 E53 23DACC1		5544	39.669	115.9692	5,911	166	142.9	04/11/2012	WI	5, Pl. 1
234	Diamond Valley	2394029116002401		⁵ 21/53-21ad	6153	39.6746	116.0076	5,910.05	182			Qw, WI	5, 8
235	Diamond Valley		³ 153 N21 E53 20AACC2	I	108792	39.6752	116.0252	5,926	510	166.1	04/11/2012	WI	5, Pl. 1
236	Diamond Valley	2394025115571701	153 N21 E53 24ADBB1	Ι	6287	39.6758	115.9595	5,902	186	132.8	04/11/2012	Wl	5, Pl. 1
237	Diamond Valley		³ 153 N21 E53 22BDBB2		14340	39.676	115.997	5,908.79	210	139.3	04/11/2012	WI	5, Pl. 1
238	Diamond Valley		³ 153 N21 E53 23AACC1	I	16585	39.6763	115.9687	5,905.51	350	141.1	04/11/2012	WI	5, Pl. 1
239	Diamond Valley		³ 153 N21 E54 20BACC2		107013	39.6766	115.922	5,925	500	162.45	04/12/2012	WI	5, Pl. 1
240	Diamond Valley	2394049115535901		⁵ 21/54-16cd	7324	39.6808	115.9012	5,984	240			Qw, WI	5, 8
241	Diamond Valley		³ 153 N21 E53 16CCAA3		31823	39.6833	116.0159	5,915.35	253	149.75	04/11/2012	WI	5, Pl. 1
242	Diamond Valley		³ 153 N21 E53 14CACC2	I	18082	39.6835	115.9781	5,902.23	385	136.05	04/11/2012	Wl	5, Pl. 1
543 1 01	Diamond Valley	394058115565701	³ 153 N21 E53 13DA 1	⁵ 21/53-13da	6630	39.6835	115.9503	5,898.95	250	132.6	04/11/2012	Qw, WI	5, 8, Pl. 1
244	Diamond Valley	2394112116032301		Ι	I	39.6868	116.0574	5,935.1		130.79	04/20/2012	IW1	5, Pl. 1

Introduction 23

[Latitude and longitude values are in the North American Datum 1983. Altitude values are in the North American Vertical Datum 1988. mm/dd/yyyy, month/da/year; BLS, below land surface:

Site number	Hydrographic area	U.S. Geological Survey station identifier	Nevada State station identifier	Other station identifier	Nevada State well log number	Latitude (degrees)	Longitude (degrees)	Land-surface altitude (feet)	Well depth (feet)	Water level BLS ¹ (feet)	Date measured (mm/dd/yyyy)	Available data	Figure(s)
245	Diamond Valley	1	³ 153 N21 E53 15BACC2		31821	39.6908	115.997	5,898.95	414	132.5	04/12/2012	Μ	5, Pl. 1
246	Diamond Valley	394141115552601	³ 153 N21 E54 08CDDD1		8061	39.6952	115.9178	5,892.39	203	130.8	04/12/2012	ΜΙ	5, Pl. 1
247	Diamond Valley	I	³ 153 N21 E53 12CCBC2		103817	39.6961	115.9641	5,897	425	129.7	04/12/2012	W1	5, Pl. 1
248	Diamond Valley	1	³ 153 N21 E53 08DCAA1		6669	39.6977	116.0253	5,898.95	184	131.3	04/12/2012	ΜΙ	5, Pl. 1
249	Diamond Valley	394149116003201	³ 153 N21 E53 09DBDD1	I	6149	39.698	116.0064	5,895.67	182	126.25	04/12/2012	IM	5, Pl. 1
250	Diamond Valley	1	³ 153 N21 E53 11CDBB2		18083	39.698	115.9781	5,895.67	406	129.7	04/12/2012	Wl	5, Pl. 1
251	Diamond Valley	1	³ 153 N21 E53 12DCAA2		105354	39.6982	115.9511	5,894	380	127.8	04/12/2012	IM	5, Pl. 1
252	Diamond Valley	2394220116055002	I		108031	39.705	116.0987	6,098.1	375	267.03	04/20/2012	Qw, WI	5, 8, Pl. 1
253	Diamond Valley	2394220116055001	Ι	I	108031	39.705	116.0987	6,098.1	499	270.8	04/20/2012	Qw, WI	5, 8, Pl. 1
254	Diamond Valley		³ 153 N21 E53 08BACC1		16175	39.7052	116.0345	5,895.67	294	125.45	04/12/2012	ΙM	5, Pl. 1
255	Diamond Valley		³ 153 N21 E53 09BBDD2	I	49701	39.7052	116.0159	5,895.67	373	121.2	04/11/2012	ΜΙ	5, Pl. 1
256	Diamond Valley	394232115572701	³ 153 N21 E53 01CDCC2		6155, 12396	39.7089	115.9592	5,892.39	182	123.8	04/12/2012	ΜΙ	5, Pl. 1
257	Diamond Valley	394232115545701	³ 153 N21 E54 05DCCC1	I	6641, 13799	39.7094	115.917	5,879.27	360	118.2	04/12/2012	IM	5, Pl. 1
258	Diamond Valley	2394238115593301	Ι	⁵ 21/53-3db	6166	39.7119	115.9876	5,888	182			Qw, WI	5,8
259	Diamond Valley	2394230115594401	Ι	⁵ 21/53-3cd	8149	39.7121	115.997	5,891	182		I	Qw, WI	5, 8
260	Diamond Valley		³ 153 N21 E53 03CDBB2	I	88101	39.7123	115.9971	5,889.11	400	119.08	04/12/2012	W1	5, Pl. 1
261	Diamond Valley		³ 153 N21 E53 06CDBB2		29955	39.7124	116.0531	5,879.27	353	108.78	04/12/2012	ΜΙ	5, Pl. 1
262	Diamond Valley		³ 153 N21 E53 04CDBB1		7425	39.7124	116.0159	5,889.11	188	115.52	04/12/2012	M1	5, Pl. 1
263	Diamond Valley	394232115584201	³ 153 N21 E53 02CCAA1		6061	39.7124	115.9784	5,889.11	182	120	04/12/2012	ΜΙ	5, Pl. 1
264	Diamond Valley	2394240116021101		⁵ 21/53- 5cb	I	39.7144	116.0373	5,883.01				Qw, WI	5, 8
265	Diamond Valley	2394240115532901	I	⁵ 21/54-4ad	981	39.718	115.8923	5,904.13	73			Qw, WI	5, 8
266	Diamond Valley	394310115594702	³ 153 N21 E53 03BBDD2		9743	39.7194	115.9973	5,885.83	198	114.85	04/12/2012	M1	5, Pl. 1
267	Diamond Valley	394248115572701	³ 153 N21 E53 01BCAA1		6721	39.7199	115.9595	5,885.83	210	115.35	04/12/2012	ΜΙ	5, Pl. 1
268	Diamond Valley	394312115551601	³ 153 N21 E54 05BDBB1	I	7700	39.7202	115.9217	5,875.98	150	108.25	04/12/2012	W1	5, Pl. 1
269	Diamond Valley		³ 153 N21 E52 04BBAA1	I	106991	39.7202	116.1293	6,545.28	318	56.47	05/30/2012	ΜΙ	5, Pl. 1
270	Diamond Valley	2394301115593301	I	⁵ 21/53- 3ab	6060	39.7221	115.9912	5,886.07	182			Qw, WI	5,8
271	Diamond Valley		³ 153 N21HE54 32DCC 2		108134	39.7244	115.9159	5,877	540	107.4	04/12/2012	M1	5, Pl. 1
272	Diamond Valley	1	³ 153 N21HE54 34CCD 1		103695	39.7249	115.8841	5,903	475	139.8	04/11/2012	ΜΙ	5, Pl. 1
273	Diamond Valley	2394342114385402	153 N21HE52 35ADD 2		24865	39.7304	116.0723	5,889.7	160	100.6	04/20/2012	I.M.	5, Pl. 1
274	Diamond Valley	394416115542201	³ 153 N22 E54 32DDCD1		7423	39.7369	115.9109	5,869.42	250	94.7	04/12/2012	ΜΙ	5, Pl. 1
275	Diamond Valley	2394413115574601	Ι	⁵ 22/53-36cc	I	39.7369	115.9637	5,876	56		I	Qw, WI	5, 8
276	Diamond Valley	2394416116014201	I	⁵ 22/53-32ca	I	39.7377	116.0292	5,871	45	I	I	Qw, WI	5, 8
LLC													

[Latitude and longitude values are in the North American Datum 1983. Altitude values are in the North American Vertical Datum 1988. mm/dd/yyyy, month/day/year; BLS, below land surface; —, no data; Qw, water quality; Pl., Plate; WI water level]

Site Hydrographic area number	U.S. Geological Survey station identifier	Nevada State station identifier	Other station identifier	Nevada State well log number	Latitude (degrees)	Longitude (degrees)	Land-surface altitude (feet)	Well depth (feet)	Water level BLS ¹ (feet)	Date measured (mm/dd/yyyy)	Available data	Figure(s)
Diamond Valley	394452115540801	³ 153 N22 E54 33BBDD1		7291	39.7477	115.9026	5,862.86	300	90.7	04/12/2012	IM	5, Pl. 1
Diamond Valley	2394431115520601	Ι	⁵ 22/54-34ab	I	39.7516	115.8764	5,889	50			Qw, WI	5, 8
Diamond Valley		³ 153 N22 E54 28DCCC2	Ι	39256	39.7516	115.897	5,862.86	315	86.68	04/12/2012	MI	5, Pl. 1
Diamond Valley	2394512116031001		⁵ 22/53-30cc		39.7533	116.0537	5,863	45			Qw, WI	5, 8
Diamond Valley	394542115533001	³ 153 N22 E54 28AACC1	I	4389	39.7621	115.8931	5,856.3	184	84.32	04/12/2012	M	5, Pl. 1
Diamond Valley	2394545115585801	Ι	⁵ 22/53-27aa		39.7624	115.9837	5,863	22			Qw, WI	5, 8
Diamond Valley	394558115525801	³ 153 N22 E54 22CCDD1	I	7157	39.766	115.8848	5,859.58	120	84.26	04/12/2012	M	5, Pl. 1
Diamond Valley	I	³ 153 N22 E54 19DC 01		91852	39.7663	115.9349	5,856	285	70.95	04/12/2012	IM	5, Pl. 1
Diamond Valley		³ 153 N22 E52 20CBDC1	Ι	99132	39.7698	116.1446	6,374.91	60	51.6	05/30/2012	MI	5, Pl. 1
Diamond Valley	I	³ 153 N22 E52 19CBBC1	Ι	99116	39.7716	116.1656	6,464.44	125	47.12	05/30/2012	Μ	5, Pl. 1
Diamond Valley	2394611115525101		⁵ 22/54-22bd	6726	39.7763	115.8792	5,867	200		I	Qw, WI	5, 8
Diamond Valley	394653116075201	³ 153 N22 E52 17DDCA1	Ι	15462	39.7814	116.1321	6,142.98	175	31.31	05/30/2012	Μ	5, Pl. 1
Diamond Valley	2394654116073801	153 N22 E52 16CCCB1	I		39.7815	116.1279	6,126.46		28.67	04/20/2012	M	5, Pl. 1
Diamond Valley	394703115560401	³ 153 N22 E54 18CADD1	Ι	6639	39.7841	115.9356	5,849.74	258	64.15	04/12/2012	M	5, Pl. 1
Diamond Valley	2394613115553701	I	⁵ 22/54-18db		39.7846	115.9339	5,852	222		I	Qw, WI	5, 8
Diamond Valley		³ 153 N22 E52 18CBDD1	I	105632	39.7848	116.1614	6,587.21	1,058	180.86	05/30/2012	M	5, Pl. 1
Diamond Valley		³ 153 N22 E52 18CBDD2	I	105633	39.7848	116.1613	6,586.75	456	50.98	05/30/2012	M	5, Pl. 1
Diamond Valley	I	³ 153 N22 E51H13DADB1	I	99130	39.7851	116.1668	6,728.4	120	92.86	05/30/2012	M	5, Pl. 1
Diamond Valley		³ 153 N22 E51 12ADCD1		99717, 99718	39.7868	116.1797	7,075.28	199	138.55	05/30/2012	MI	5, Pl. 1
Diamond Valley		³ 153 N22 E52 18ACDB1		105635	39.7891	116.154	6,398.96	425	14.55	50/30/2012	MI	5, Pl. 1
Diamond Valley	2394729116011201	I	⁵ 22/53-17aa	I	39.7913	116.0189	5,850	22			Qw, WI	5, 8
Diamond Valley	2394717116044901	I		78983	39.7926	116.0776	5,866.7	83	72.83	04/20/2012	Qw, WI	5, 8, Pl. 1
Diamond Valley	394743115554302	³ 153 N22 E54 07DDCD2		5416	39.7949	115.9292	5,846.46	107	48.7	04/12/2012	MI	5, Pl. 1
Diamond Valley	2394806115541701	I	⁵ 22/54-8dd		39.796	115.9109	5,846	150			Qw, WI	5, 8
Diamond Valley	I	³ 153 N22 E51 01DBBB1	I	106421	39.8007	116.1864	7,743.25	1,000	409.52	06/06/2012	IM	5, Pl. 1
Diamond Valley		³ 153 N22 E51 01DBBB2		106718	39.8007	116.1864	7,743.25	855	524.02	06/06/2012	MI	5, Pl. 1
Diamond Valley		³ 153 N22 E51H12DBBC1	I	107046	39.8008	116.1712	6,976.42	1,000	297.37	06/06/2012	MI	5, Pl. 1
Diamond Valley	I	³ 153 N22 E52 07DBBD2	I	105630	39.8009	116.1552	6,467.14	588	43.95	05/30/2012	MI	5, Pl. 1
Diamond Valley	I	³ 153 N22 E52 07DBBD1		105631	39.801	116.1552	6,467.44	1,038	158.42	05/30/2012	IM	5, Pl. 1
Diamond Valley	I	³ 153 N22 E52 11ACCB1		99127	39.8034	116.081	5,897.51	125	106.15	05/30/2012	IM	5, Pl. 1
Diamond Valley	394835115561801	³ 153 N22 E54 06CCC1		7975	39.8096	115.9406	5,843.18	250	51.5	04/12/2012	IM	5, Pl. 1
Diamond Valley	I	³ 153 N22 E54 05DDBB2		93218	39.8125	115.9119	5,839	500	49.42	04/12/2012	IM	5, Pl. 1
Diamond Valley		³ 153 N22 E54 05CDBB2		76995	39.8129	115.9212	5,839	475	48.8	04/12/2012	IM	5, Pl. 1
	Diamond Valley Diamond Valley		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	394452115540801 3153 $N22$ $E54$ $33BBDD1$ 2394451115520601 3153 $N22$ $E54$ $28DCC2$ 239451115533001 3153 $N22$ $E54$ $28ACC1$ 394558115553801 3153 $N22$ $E54$ $28ACC1$ 2394558115553801 3153 $N22$ $E54$ $28CCD1$ 239458115553801 3153 $N22$ $E54$ $28CCD1$ 239458115553801 3153 $N22$ $E54$ $28CCD1$ $ 3153$ $N22$ $E54$ $18CD1$ $ 3153$ $N22$ $E54$ $18CD1$ 239463116075201 3153 $N22$ $E52$ $18CBDD2$ 239463116075201 3153 $N22$ $E51$ $18CBDD2$ 239463116075201 3153 $N22$ $E51$ $18DD2$ 23946311601201 $ 3153$ $N22$ $E51$ $10DBBB1$ 2394731116044901 $ 3153$ $N22$ $E51$ $10DBBB2$ 239473115554302 3153 $N22$ $E51$ $10DBBB2$ 239470115011201 $ 239473115554302$ 3153 $N22$ $E51$ $10DBBB223947311555618013153N22E5110DBBB2 3153<$	39445115540801 3 (53 N22 E54 33BDD1 $ 3$ (3431115520601 3 (53 N22 E54 28DCCC2 $ 3$ (3431115532001 3 (53 N22 E54 28DCC2 $ 3$ (34542115533001 3 (53 N22 E54 28DACC1 $ 3$ (34542115535801 3 (53 N22 E54 19DC 01 $ 3$ (35 N22 E54 19DC 01 $ 3$ (35 N22 E54 19DC 01 $ 3$ (53 N22 E54 19DC 01 $ 3$ (53 N22 E54 19DC 01 $ 3$ (53 N22 E52 10CBBC1 $ 3$ (53 N22 E52 10CBBC1 $ 3$ (53 N22 E52 10CBBC1 $ 3$ (34)03115559010 3 (53 N22 E52 18CBDD1 $ 3$ (34)0311555910 $ 3$ (35 N22 E51 13DDEA1 $ 3$ (34)0311555910 $ 3$ (34)0311555910 $ 3$ (34)0311555410 $ 3$ (34)0311555410 $ 3$ (34)0311555410 $ 3$ (34)0311555410 $ 3$ (34)0311555410 $ 3$ (34)0311555410 $ 3$ (34)0311555410 $ 3$ (35)02 E51 102BBB1 $ 3$ (34)0311555410 $ 3$ (34)0311555410 $ 3$ (34)0311555410 $ 3$ (34)0311556180 <th>3944521155408013153 N22 E54 33BDD1$-$72913944511553000$3153 N22 E54 23BDCC2$$32554 34D$$-$39454211553001$3153 N22 E54 23BACC1$$32553 - 30c6$<math> 34542115533001$3153 N22 E54 23BACC1$$32553 - 30c6$<math> 394542115553001$3153 N22 E54 23BACC1$$3153 N22 E54 23BACC1$<math> 394542115553001$3153 N22 E54 23CCDD1$$9116$<math>394542115553001$3153 N22 E52 3CBBC1$$9116$$3945811555701$$3153 N22 E52 3CBBC1$$9116$$3946511607501$$3153 N22 E52 3CBBC1$$9116$$394651115557101$$3153 N22 E52 15BDD21$<math> 394651115557101$518 N22 E52 15BDD21$<math> 394651115557101$518 N22 E51 18BDD21$<math> 39466111057233701$518 N22 E51 18BDD21$<math> 394661115557101$518 N22 E51 18BDD21$<math> 394661115557101<math> 394661135557001$3153 N22 E51 18DDD21$<math> 394611355560101$518 N22 E51 18DDD21$<math> 39461115557001$3153 N22 E51 18DDD21$<math> 39461115557001$3153 N22 E51 18DDD21$<math> 39461111555600101$518 N22 E51 18DDD21$<math> 39470115574001$518 N22 E51 18DD21$<math> 39471315574302$3153 N22 E51 18DD21$$-$</math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></th> <th>39445115540801$= 153$ N32 E54 33BBD1$7204$$397516$$3153$ N32 E54 28OCCC2$30256$$397516$$3153$ N32 E54 28OCC2$30256$$39762$$23945111563100$$3153$ N32 E54 28ACC1$4389$$39762$$239454115583801$$3153$ N32 E54 28ACC1$4389$$39762$$23945411558300$$3153$ N32 E54 19DC 01$4389$$39763$$3153$ N32 E54 19DC 01$9176$$39763$$3153$ N32 E52 19CBBC1$9176$$39763$$3153$ N32 E52 19CBBC1$9176$$39763$$2394611165210$$3153$ N22 E52 19CBBC1$9176$$39763$$239465116073801$$153$ N22 E52 19CBBD1$91663$$39763$$239465116073801$$153$ N22 E52 16CCB1$91363$$39784$$239465116073801$$153$ N22 E51 18CBDD2$91762$$397763$$239465116073801$$153$ N22 E51 18CBDD2$91563$$39784$$3153$ N22 E51 18CBDD2$191662$$397763$$239465116073801$$153$ N22 E51 18CBDD2$91563$$39784$$3153$ N22 E51 18CBDD2$39764$<math> 2394713115553701$91563$$39784$$3153$ N22 E51 18CBDD2$91769$$39784$$3153$ N22 E51 18CBDD</math></th> <th>39432115540801 153 N22 E54 315 2.254-344b - 39.751 115.9026 39443115520601 3153 N22 E54 2565-30cc - 39.753 116.9026 29443115520601 3153 N22 E54 280.750 39.753 116.9026 39454211553001 3153 N22 E54 280.760 115.897 39.753 116.9036 39454211553001 3153 N22 E54 280.760 115.897 39.7561 115.897 39454211555701 3153 N22 E54 90.70 39.7561 115.897 39455811555701 3153 N22 E52 050.60 39.7561 116.166 29945811057501 - 9133 N22 E52 106.01 39.766 115.9576 394658110073601 3153 N22 E52 1050.01 - 91.33 106.01 15.9586 39468110735701 41 153 105 106.02 39.7841 106.01 3946811115557101 - 9133 N22 E51.180.010 -<</th> <th>39432115540601 1/53 2/25434b0 - 7201 39/471 15 568.36 - - 39751 155 2582.43b - 39751 15587 586.36 - - 39756 39756 15587 586.36 2944211553001 315 N2254326 - 39756 155873 586.3 394511553001 315 N2254316 - 39756 155883 586.3 394581155300 315 N2254310C - 39763 1159837 586.3 3945811552301 315 N2254310C - 9132 29.464116 67.44 394581155240 315 N2254200DC - 9132 29.4641 67.44 3945811552510 315 N2254200DC - 9132 16.166 6.444 3945811552510 315 N2254200DC - 97.84 16.166 6.444 3946111675210 358 N22551 158.79 58.67 58.667</th> <th>34431155000 153 N22 E4 3BDD $-$ 799 97.477 15.005 5.862.86 300 301 3944311552000 1153 N22 E4 3BDCC2 39.751 115.8751 5.802.86 30 3944311553001 153 N22 E4 320CC22 39.751 15.8071 5.802.86 30 394511553001 153 N22 E4 320CC2 39.756 115.8031 5.802.86 22 3945811555301 153 N22 E4 30C 39.766 115.8931 5.8073 5.863 22 3945811555301 153 N22 E5 22CCDD1 9176 115.8931 5.803 20 3945811555201 153 N22 E5 120DCK1 9176 115.893 5.803 20 3945811667501 153 N22 E5 10CDDC 9176 115.169 6.444 25 3946511667501 153 N22 E5 10CDDC 9276 116.163 6.5667 266 3946511667501 153 N22 E5 10CDDC 92761 116.163 <</th> <th>34421155400 315 N22 E41 31BDD - 7291 39.477 115,002 5.82.8 300 0.7 3944211552001 3153 N22 E41 31BDD - 39.751 15.877 5.82.8 30 0.7 394421155301 3153 N22 E41 32BDD - 39.751 15.877 5.82.8 30 0.7 394421155301 3153 N22 E41 32BDC - 39.761 15.8931 5.863 14 4.2 394421155301 3153 N22 E41 32BDC - 39.763 16.15934 5.863 22 4.2 3944311557301 3153 N22 E41 20DC01 - 9115 39.763 16.15934 5.863 313 4.2 17.3 3944611057801 153 N22 E51 D0DC1 - 9116 37.64 115.9916 6.6 4.7 20 3.4 4.1 20 3.4 4.1 20 4.1 20 4.1 20 4.1 20 4.1 20 4.1 20 4.1 20 4.1 20 4.1 <td< th=""><th>9442.1155.060 15.3 V.2.Est 318.DD1 7.91 9.7.710 11.5.7.01 5.8.2.6 30. 0.7 0.7.7.10 0.7.7.10 3544311152.000 15.3 V.2.Est 336.ACC 2.255.3.46 3.9.7.51 15.87 5.8.2.6 30. 0.7 0.17.2.012 0.4.7.01 3544311152.001 15.3 V.2.Est 336.ACC 2.255.3.46 3.9.7.51 15.875 5.8.6.3 5.1 0.4.7.01 0.4.7.2.01 0</th></td<></th>	3944521155408013153 N22 E54 33BDD1 $-$ 72913944511553000 $3153 N22 E54 23BDCC2$ $ 32554 34D$ $-$ 39454211553001 $3153 N22 E54 23BACC1$ $ 32553 - 30c6$ $ 345421155330013153 N22 E54 23BACC1 32553 - 30c6 3945421155530013153 N22 E54 23BACC1 3153 N22 E54 23BACC1 3945421155530013153 N22 E54 23CCDD1 91163945421155530013153 N22 E52 3CBBC1 911639458115557013153 N22 E52 3CBBC1 911639465116075013153 N22 E52 3CBBC1 91163946511155571013153 N22 E52 15BDD21 394651115557101518 N22 E52 15BDD21 394651115557101518 N22 E51 18BDD21 39466111057233701518 N22 E51 18BDD21 394661115557101518 N22 E51 18BDD21 394661115557101 3946611355570013153 N22 E51 18DDD21 394611355560101518 N22 E51 18DDD21 394611155570013153 N22 E51 18DDD21 394611155570013153 N22 E51 18DDD21 39461111555600101518 N22 E51 18DDD21 39470115574001518 N22 E51 18DD21 394713155743023153 N22 E51 18DD21 -$	39445115540801 $= 153$ N32 E54 33BBD1 $ 7204$ 397516 $ 3153$ N32 E54 28OCCC2 $ 30256$ 397516 $ 3153$ N32 E54 28OCC2 $ 30256$ 39762 23945111563100 3153 N32 E54 28ACC1 $ 4389$ 39762 239454115583801 3153 N32 E54 28ACC1 $ 4389$ 39762 23945411558300 3153 N32 E54 19DC 01 $ 4389$ 39763 $ 3153$ N32 E54 19DC 01 $ 9176$ 39763 $ 3153$ N32 E52 19CBBC1 $ 9176$ 39763 $ 3153$ N32 E52 19CBBC1 $ 9176$ 39763 2394611165210 3153 N22 E52 19CBBC1 $ 9176$ 39763 239465116073801 153 N22 E52 19CBBD1 $ 91663$ 39763 239465116073801 153 N22 E52 16CCB1 $ 91363$ 39784 239465116073801 153 N22 E51 18CBDD2 $ 91762$ 397763 239465116073801 153 N22 E51 18CBDD2 $ 91563$ 39784 $ 3153$ N22 E51 18CBDD2 $ 191662$ 397763 239465116073801 153 N22 E51 18CBDD2 $ 91563$ 39784 $ 3153$ N22 E51 18CBDD2 $ 39764$ $ 2394713115553701 9156339784 3153 N22 E51 18CBDD2 9176939784 3153 N22 E51 18CBDD$	39432115540801 153 N22 E54 315 2.254-344b - 39.751 115.9026 39443115520601 3153 N22 E54 2565-30cc - 39.753 116.9026 29443115520601 3153 N22 E54 280.750 39.753 116.9026 39454211553001 3153 N22 E54 280.760 115.897 39.753 116.9036 39454211553001 3153 N22 E54 280.760 115.897 39.7561 115.897 39454211555701 3153 N22 E54 90.70 39.7561 115.897 39455811555701 3153 N22 E52 050.60 39.7561 116.166 29945811057501 - 9133 N22 E52 106.01 39.766 115.9576 394658110073601 3153 N22 E52 1050.01 - 91.33 106.01 15.9586 39468110735701 41 153 105 106.02 39.7841 106.01 3946811115557101 - 9133 N22 E51.180.010 -<	39432115540601 1/53 2/25434b0 - 7201 39/471 15 568.36 - - 39751 155 2582.43b - 39751 15587 586.36 - - 39756 39756 15587 586.36 2944211553001 315 N2254326 - 39756 155873 586.3 394511553001 315 N2254316 - 39756 155883 586.3 394581155300 315 N2254310C - 39763 1159837 586.3 3945811552301 315 N2254310C - 9132 29.464116 67.44 394581155240 315 N2254200DC - 9132 29.4641 67.44 3945811552510 315 N2254200DC - 9132 16.166 6.444 3945811552510 315 N2254200DC - 97.84 16.166 6.444 3946111675210 358 N22551 158.79 58.67 58.667	34431155000 153 N22 E4 3BDD $-$ 799 97.477 15.005 5.862.86 300 301 3944311552000 1153 N22 E4 3BDCC2 $ 39.751$ 115.8751 5.802.86 30 3944311553001 153 N22 E4 320CC22 $ 39.751$ 15.8071 5.802.86 30 394511553001 153 N22 E4 320CC2 $ 39.756$ 115.8031 5.802.86 22 3945811555301 153 N22 E4 30C $ 39.766$ 115.8931 5.8073 5.863 22 3945811555301 153 N22 E5 22CCDD1 $ 9176$ 115.8931 5.803 20 3945811555201 153 N22 E5 120DCK1 $ 9176$ 115.893 5.803 20 3945811667501 153 N22 E5 10CDDC $ 9176$ 115.169 6.444 25 3946511667501 153 N22 E5 10CDDC $ 9276$ 116.163 6.5667 266 3946511667501 153 N22 E5 10CDDC $ 92761$ 116.163 <	34421155400 315 N22 E41 31BDD - 7291 39.477 115,002 5.82.8 300 0.7 3944211552001 3153 N22 E41 31BDD - 39.751 15.877 5.82.8 30 0.7 394421155301 3153 N22 E41 32BDD - 39.751 15.877 5.82.8 30 0.7 394421155301 3153 N22 E41 32BDC - 39.761 15.8931 5.863 14 4.2 394421155301 3153 N22 E41 32BDC - 39.763 16.15934 5.863 22 4.2 3944311557301 3153 N22 E41 20DC01 - 9115 39.763 16.15934 5.863 313 4.2 17.3 3944611057801 153 N22 E51 D0DC1 - 9116 37.64 115.9916 6.6 4.7 20 3.4 4.1 20 3.4 4.1 20 4.1 20 4.1 20 4.1 20 4.1 20 4.1 20 4.1 20 4.1 20 4.1 <td< th=""><th>9442.1155.060 15.3 V.2.Est 318.DD1 7.91 9.7.710 11.5.7.01 5.8.2.6 30. 0.7 0.7.7.10 0.7.7.10 3544311152.000 15.3 V.2.Est 336.ACC 2.255.3.46 3.9.7.51 15.87 5.8.2.6 30. 0.7 0.17.2.012 0.4.7.01 3544311152.001 15.3 V.2.Est 336.ACC 2.255.3.46 3.9.7.51 15.875 5.8.6.3 5.1 0.4.7.01 0.4.7.2.01 0</th></td<>	9442.1155.060 15.3 V.2.Est 318.DD1 7.91 9.7.710 11.5.7.01 5.8.2.6 30. 0.7 0.7.7.10 0.7.7.10 3544311152.000 15.3 V.2.Est 336.ACC 2.255.3.46 3.9.7.51 15.87 5.8.2.6 30. 0.7 0.17.2.012 0.4.7.01 3544311152.001 15.3 V.2.Est 336.ACC 2.255.3.46 3.9.7.51 15.875 5.8.6.3 5.1 0.4.7.01 0.4.7.2.01 0

Si	Site Hydrographic area number	U.S. Geological Survey station identifier	Nevada State station identifier	Other station identifier	Nevada State well log number	Latitude (degrees)	Longitude (degrees)	Land-surface altitude (feet)	Well depth (feet)	Water level BLS ¹ (feet)	Date measured (mm/dd/yyyy)	Available data	Figure(s)
311	11 Diamond Valley		³ 153 N23 E51 36ACDC1	1	99129	39.816	116.1837	6,798.07	460	Flowing	05/30/2012	WI	5, Pl. 1
ŝ	312 Diamond Valley	2394920115584801	I	⁵ 23/53-34dd		39.8221	115.9809	5,836.04	22			Qw, WI	5,8
3	313 Diamond Valley	2394903115565801	I	⁵ 22/53-1aa		39.8233	115.9426	5,839	22			Qw, WI	5, 8
3	314 Diamond Valley		³ 153 N23 E54 32CDD 01	I	39813	39.8246	115.913	5,834	493	43	04/12/2012	Wl	5, Pl. 1
3	315 Diamond Valley	2395003116030101	I		106999	39.8341	116.0503	5,817.1	59	22.74	04/20/2012	WI	5, Pl. 1
3	316 Diamond Valley		³ 153 N23 E54 29CDDD2	I		39.8385	115.9131	5,830.05	Ι	37.4	04/12/2012	WI	5, Pl. 1
3	317 Diamond Valley	2395020116030001	153 N23 E53 29CCCA1	⁵ 23/53-30dd	I	39.839	116.033	5,820	22	17.26	03/20/2012	Qw, WI	5, 8, Pl. 1
3	318 Diamond Valley	2395021115540901	Ι	⁵ 23/54-29dd	7862	39.8391	115.9034	5,834	320			Qw, WI	5,8
3	319 Diamond Valley	I	³ 153 N23 E54 30DDD 2	I	69258	39.8391	115.9237	5,826.77	452	37.5	04/12/2012	I.M.	5, Pl. 1
3,	320 Diamond Valley	I	³ 153 N23 E54 27ACC 1	I	I	39.843	115.8734	5,830.05	Ι	68.7	04/12/2012	Wl	5, Pl. 1
321	21 Diamond Valley	2395100115593001	153 N23 E53 27BB 1	⁵ 23/53-27bb		39.8509	115.9955	5,826	22	16.09	03/20/2012	Qw, WI	5, 8, Pl. 1
э,	322 Diamond Valley		³ 153 N23 E54 20DD 1		7834	39.8527	115.9045	5,823.49	245	27.51	04/12/2012	WI	5, Pl. 1
3,	323 Diamond Valley	2395147116043901	I			39.8683	116.0651	5,804		17.3	12/13/2012	WI	5, Pl. 1
3	324 Diamond Valley	2395156116043901	I	⁵ 23/52-13ca		39.8719	116.0667	5,813.92	I			Qw	5,8
3	325 Diamond Valley	2395220115561001	Ι	I		39.8721	115.9282	5,800	32	15.6	03/20/2012	W1	5, Pl. 1
3,	326 Diamond Valley		³ 153 N23 E52 13BBA 1	I	90915	39.8806	116.0675	5,818	360	19.85	04/12/2012	WI	5, Pl. 1
3	327 Diamond Valley	2395255116051101				39.891	116.0726	5,805	98	10.68	12/13/2012	Qw, WI	5, 8, Pl. 1
3,	328 Diamond Valley	2395441116040501	I			39.9113	116.069	5,810	I	14.49	12/13/2012	WI	5, Pl. 1
3,	329 Diamond Valley		³ 153 N24 E53 06BDAB1		5527	39.993	116.0412	5,800.52	175	8.3	04/12/2012	WI	5, Pl. 1
ŝ	330 Diamond Valley	2395914116023301	I	⁵ 24/53-6ac		39.9952	116.0403	5,792	190			Qw	5,8
3	331 Diamond Valley	400116115534801	³ 153 N25 E54 28BCBC1	⁵ 25/54-28bc	1349	40.0209	115.8979	5,813.65	55	14.1	04/12/2012	Qw, WI	5, 8, Pl. 1
ŝ	332 Diamond Valley	2400426116015001	I	⁵ 25/53-5cb2	943	40.0735	116.0267	5,838.9	131			Qw, WI	5,8
3	333 Diamond Valley	2400726115525901	Ι	⁵ 26/54-15cd	I	40.1302	115.8806	5,788	10	6.03	04/08/1966	Qw, WI	5, 8, Pl. 1
Э,	334 Diamond Valley	2400834115564401	I	I	I	40.1474	115.9465	5,786.81	13	8.5	04/08/1966	WI	5, Pl. 1
33	335 Northern Little Smoky Valley	2390753116051701	1		I	39.1236	116.0871	6,443.3	500	383.51	12/14/2012	I.M.	5, Pl. 1
33	336 Northern Little Smoky Valley	2390734116013101		[2405	39.1263	116.026	6,233.4	300	218.8	12/14/2012	I.W.	5, Pl. 1
33	337 Northern Little Smoky Valley	2391037116040001	1		I	39.1772	116.0675	6,404.9	467	347.46	04/06/2011	IM	5, Pl. 1
	338 Northern Little Smoky Valley	2384048114341001			I	39.2103	116.0373	6,179.7	166	136.45	12/14/2012	Qw, WI	5, 8, Pl. 1
ଞ \ 1	339 Pine Valley	2395036116111801	I	I	1036	39.8433	116.1892	6,604	60	10	08/05/1949	WI	5, Pl. 1
т П	340 Pine Valley	2395330116122001	I	I	117015	39.8918	116.2056	6,548	120	14.75	06/06/2012	WI	5, Pl. 1
	341 Pine Valley	2395355116094501	Ι			39.8987	116.1626	6,276	53	16.94	06/06/2012	WI	5, Pl. 1

Site number	Hydrographic area	U.S. Geological Survey station identifier	Nevada State station identifier	Other station identifier	Nevada State well log number	Latitude (degrees)	Longitude (degrees)	Land-surface altitude (feet)	Well depth (feet)	Water level BLS ¹ (feet)	Date measured mm/dd/yyyy)	Available data	Figure(s)
342	342 Pine Valley	2400015116142501			9349	40.0041	116.2412 5,804	5,804	195	134.12	195 134.12 08/15/2006	Μ	W1 5, Pl. 1
343	343 Pine Valley	² 400026116114801			4249	40.0071	116.1976	5,814	69	24.95	04/28/1982	ΜI	5, Pl. 1
344	344 Diamond Valley	2395008116040701				39.8356	116.0694 5,823.6	5,823.6	l	34.03	34.03 12/13/2012	MI	5, Pl. 1

Table 5.

¹Water-level values used to determine contours on plate.

²Latitude, longitude, and altitude values are from the USGS National Water Information System (http://waterdata.usgs.gov/nwis).

³Latitude, longitude, and altitude values are from the State of Nevada Division of Water Resources Database (http://water.nr.gov/data/waterlevel).

⁴Site name published *in* Rush, F.E., and Everett, D.E., 1964, Groundwater appraisal of Monitor, Antelope, and Kobeh Valleys, Nevada: Nevada Department of Conservation and Natural Resources, Ground-Water Resources-Reconnaissance Report 30, 45 p. (http://images.water.nv.gov/images/publications/Recon%20Reports/rpt30 -monitor_antelope_kobeh_valley.pdf) ⁵Site name published *in* Harrill, J., 1968, Hydrologic response to irrigation pumping in Diamond Valley, Eureka and Elko Counties, Nevada, 1950–65: State of Nevada, Department of Conservation and Natural Resources, Nevada Department of Conservation and Natural Resources, Water Resources Bulletin 35, 85 p. (*http://images.water.m.gov/images/publications/water%20resources%20bulletins/Bullet*

JA1094 SE ROA 781

spring complex. With the exception of potential outflow from the southern part of Antelope Valley, groundwater from southern and northern Monitor and Antelope Valleys moves northward toward Kobeh Valley and eastward from Kobeh Valley towards Devil's Gate (plate 1). Devil's Gate is a narrow canyon cut into carbonate rock south of Whistler Mountain and restricts groundwater flow into Diamond Valley. Residual groundwater flow (in excess of that discharged by ET) from valleys upgradient of Diamond Valley converge west of Devil's Gate in Kobeh Valley and flow into the south part of Diamond Valley. Digital Geographic Information System (GIS) data representing the groundwater-level contours shown on plate 1 are described in appendix 1.

Chemical Characterization of Groundwater

The chemical composition of groundwater is influenced primarily by the mineral makeup of the hydrogeologic units through which the water flows. Weathering and dissolution of these minerals provides a record in the major-ion chemical composition of groundwater, which can be used to characterize groundwater and evaluate flow paths. Stable isotopes of oxygen-18 and deuterium in precipitation and groundwater also can aid with evaluating the groundwater source and its evolution along a flow path.

Groundwater in basin-fill aquifers in the DVFS was characterized on the basis of water samples from 14 valley springs and from 76 wells representing the upper 250 ft of the aquifer (fig. 8; table 6). All spring and well sites were sampled for major-ion chemistry, and a subset of 32 sites were sampled for stable isotopes. Of the 90 sites sampled, 21 were sampled in 2008 (Knochenmus and others, 2011), and 11 were sampled between late 2010 and 2012. A spring sample from Garden Valley (site 62) and a groundwater sample from Antelope Valley (site 96) were collected in 2008 and again in 2012 (fig. 8; table 6). Major-ions at site 62 were stable between 2008 and 2012 (coefficient of variation within 6 percent), but decreased at site 96 over the same period (coefficient of variation within 36 percent). In addition to groundwater samples, 21 precipitation samples were collected from bulk precipitation collectors co-located with the 4 ET sites (sites 1-4; fig. 2; table 6) and were analyzed for stable isotopes. Appendix 2 provides details about the laboratories used for the chemical analysis and about quality-assurance protocols and analyses used during the 2010–12 sampling events.

To expand spatial coverage in the study area, samples from 60 additional sites reported in previous investigations, the majority of which were in southern Diamond Valley, were incorporated in this analysis (Rush and Everett, 1964; Harrill, 1968; U.S. Geological Survey National Water Information System database (*http://waterdata.usgs.gov/nwis*). Wellconstruction information related to the sites of these historical samples was often unavailable; therefore, evaluation of chemical gradients between neighboring wells with more recent samples was limited because the different chemical compositions could be related to sampling depth. Sites 125 and 321 in Kobeh Valley and Diamond Valley, respectively, were sampled in the mid-1960s and again in 2008 (table 6), however. Comparisons indicated that most major-ion concentrations from these two sites remained relatively consistent from the mid-1960s to 2008 (coefficient of variation within 23 percent) and that the use of older samples in the recent chemical characterization was appropriate. At site 321, an increase in calcium and decrease in sulfate concentrations (coefficient of variation 38 and 77 percent, respectively) was observed between the datasets. Given the extended length of time between collecting the sample, it is unclear if the changes in calcium and sulfate are valid, or if sampling, analytical laboratory techniques, or both could have contributed to the differences. Groundwater pumping also has caused substantial groundwater-level declines in areas near many of the historical water-chemistry sampling sites in southern Diamond Valley; however, the 1960s data provide the best water-chemistry dataset available for the area.

Major-Ion Chemistry

The chemical signature of groundwater reflects general hydrogeologic-unit mineralogy and can be used to infer groundwater flow paths. In the DVFS, major-ion chemistry was used to group groundwater samples into water types and to evaluate groundwater evolution. Groundwater samples collected from sites 62, 126, and 160 were not evaluated for bicarbonate concentrations by the analytical laboratory (table 6); therefore, bicarbonate alkalinity (converted from the alkalinity concentration of calcium carbonate in milligrams per liter, or mg/L, CaCO₃, assuming the concentration was entirely bicarbonate; table 8 in Hem, 1985) was used for anion comparisons. The cation chemistry of natural waters typically is dominated by calcium, magnesium, sodium, and potassium (Hem, 1985). The chemistry of water samples collected as part of this study is summarized in figure 9. The majority of samples (roughly 90 percent) consisted of 10 to 80 percent calcium; 15 to 90 percent sodium, with little potassium present relative to sodium; and 10 to 60 percent magnesium. There was greater variability in cation chemistry in Diamond, Kobeh, and southern Monitor Valleys than northern Monitor and Antelope Valleys (fig. 9). The anion chemistry of most samples collected as part of this study consisted of 60 to 90 percent bicarbonate, 5 to 35 percent sulfate, and 5 to 40 percent chloride. Calcium-bicarbonate water type was represented in 58 percent of samples, sodium-bicarbonate in 22 percent of samples, and magnesium-bicarbonate in 11 percent of samples (fig. 9). Anion chemistry was dominated by bicarbonate in all water samples collected, with a few noted exceptions; sites 46, 252, 253, 218, and 74 were dominated by sulfate in areas down gradient of siliciclastic sedimentary rocks (sulfate-bearing), while sites 298, 312, and 317 were dominated by chloride near the Diamond Valley playa (flow system terminus). No clear differences were observed in the general water types of the individual basins. **JA1095**

Carbonate rocks are composed of various calcium-carbonate minerals and are present in most mountain ranges in the DVFS, predominately, in the Diamond Mountains and the Sulphur Springs, Fish Creek, and Antelope Ranges (fig. 8; Tumbush and Plume, 2006). Accordingly, the majority of groundwater samples from central and southern Diamond, Antelope, northern Little Smoky Valley, southern and northern Monitor Valleys, and northern Kobeh Valley were a calciumbicarbonate type (figs. 8, 9). Groundwater samples from throughout southern Kobeh Valley, central Diamond Valley, and southern Monitor Valley were a sodium-bicarbonate type. Greater sodium proportions in southern Kobeh Valley and southern Monitor Valley groundwater (sites 70, 119, 121, 125, 126, 132; figs. 8, 9; table 6) likely resulted from plagioclaserich andesitic and ash-flow tuff volcanic rocks present in the recharge source areas in the Simpson Park Mountains and the Toquima and northern Monitor Ranges (fig. 1; Roberts and others, 1967). Sulfate water types with various cation proportions were found in the northern part of southern Monitor Valley (site 74; figs. 8, 9; table 6), the western part of Kobeh Valley (site 46; figs. 8, 9; table 6), and west-central Diamond Valley (sites 252 and 253; figs. 8, 9; table 6). The source of sulfate is probably related to clastic rocks consisting of black shale of the Vinnini Formation (Roberts and others, 1967).

The chemical signature of groundwater in Diamond Valley largely was determined from samples collected in the mid-1960s by Harrill (1968) and indicated changes in water type along groundwater-flow paths. Groundwater near valley edges generally was calcium- or magnesium-dominated bicarbonate water (fig. 8) with slightly elevated (compared to 500 mg/L secondary drinking water standard) total dissolved solids concentrations (TDS; 338 mg/L average, table 7). During pre-development and at least through the 1960s, groundwater generally flowed from southern to northern Diamond Valley, discharging near the large playa (Harrill, 1968). Groundwater in playa deposits was documented as chemically distinct from that in the fresh basin-fill aquifer (Huntington and others, 2014). As would be expected at the terminus of a groundwater-flow system, sodium and chloride content increased from averages of 32 and 24 mg/L, respectively, near southern Diamond Valley to about 340 mg/L (table 7) near the southern playa edge because of continued enrichment as groundwater moved along this northerly flow path toward the playa. The groundwater evolved from a calcium-bicarbonate to a sodium-bicarbonate to a more concentrated sodium-chloride water (sites 298, 312, and 317 from figs. 8, 9; table 6; similar to Arakel and others, 1990), likely owing to ion exchange of calcium for sodium and the release of sodium bound in clays in basin-fill deposits (Harrill, 1968). The post-development groundwater divide, near sites 317 and 321, has caused a reversal of the direction of groundwater flow, which eventually can result in the southward migration of higher TDS and sodium-rich groundwater.

Groundwater in the DVFS was evaluated with respect to national primary and secondary drinking-water standards. Primary standards (maximum contaminant levels, or MCLs) have been established by the U.S. Environmental Protection Agency (EPA) for constituents that pose potential health risks to humans (U.S. Environmental Protection Agency, 2009). Secondary standards generally are non-enforceable guidelines designed to ensure water quality with desirable cosmetic or aesthetic characteristics, such as taste and odor (U.S. Environmental Protection Agency, 2009); however, the Nevada Division of Environmental Projection enforces Nevada-specific secondary standards (Nevada Administrative Code 445A.455).

Groundwater quality in the DVFS generally was within acceptable drinking water standards, with only a few exceptions. The pH was measured outside the acceptable range (6.6–8.5) in three samples; Diamond and Kobeh Valleys each contained one sample above 8.5 and Southern Monitor Valley contained one sample below 6.5 (table 6). The secondary MCL for chloride and sulfate (both 250 mg/L) was exceeded in three and six samples, respectively (table 6). Chloride exceedances occurred only within Diamond Valley whereas sulfate exceedances occurred in Diamond (4), Southern Monitor (1) and Kobeh Valleys (1). Total dissolved solids concentrations ranged from 77 to 1,520 mg/L, with a median concentration of 320 mg/L. Concentrations in nine samples, seven of which were collected in Diamond Valley, exceeded the 500 mg/L TDS secondary MCL. No samples exceeded the natural fluoride MCL of 4 mg/L; however, samples from two sites in Kobeh Valley exceeded the Nevada secondary MCL of 2 mg/L.

Stable Isotopes

Stable isotope data were used to gain insight about precipitation distributions, the source and timing of groundwater recharge, and interbasin flow beyond the DVFS. The stable isotopes of oxygen-18 and deuterium in water are affected by meteorological processes and exhibit a strong correlation with air temperature (Friedman, 1953). A global meteoric water line (GMWL; Craig, 1961) represents the relationship between oxygen-18 and deuterium of fresh water on a global scale and provides a reference for interpreting isotopic data of groundwater. Craig (1961) observed that isotopically depleted groundwater (more negative values) was associated with cool temperatures, whereas isotopically enriched groundwater (less negative values) was associated with warm temperatures. From this correlation, the source and season of groundwater recharge can be evaluated.

Stable isotope data were collected from well and spring sites throughout the DVFS (1981, 2008, and 2012) and were compared to isotope data from local precipitation (table 6). Precipitation was sampled for isotopic analysis from bulkprecipitation gages in 2012 and early 2013 during warm (July, Aug., and Sept.) and cool months (Oct., Nov., and Feb.). Bulkprecipitation gages collocated at ET sites in Kobeh Valley were filled with at least one-half inch of mineral oil to minimize evaporative losses. Isotopic signatures of locally sampled precipitation were used to define a local meteoric water line (LMWL; fig. 10).

> JA1096 SE ROA 783

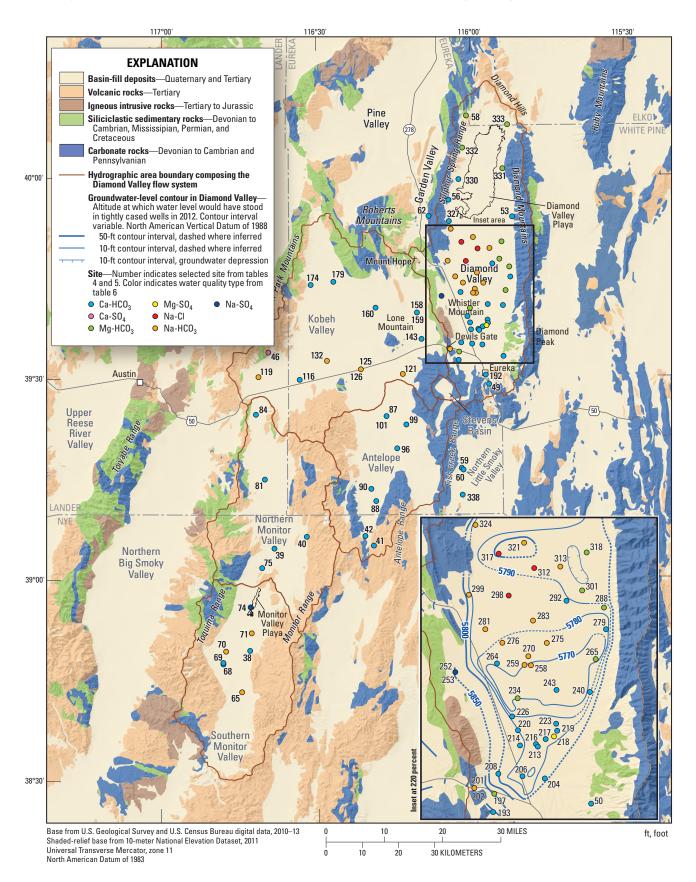
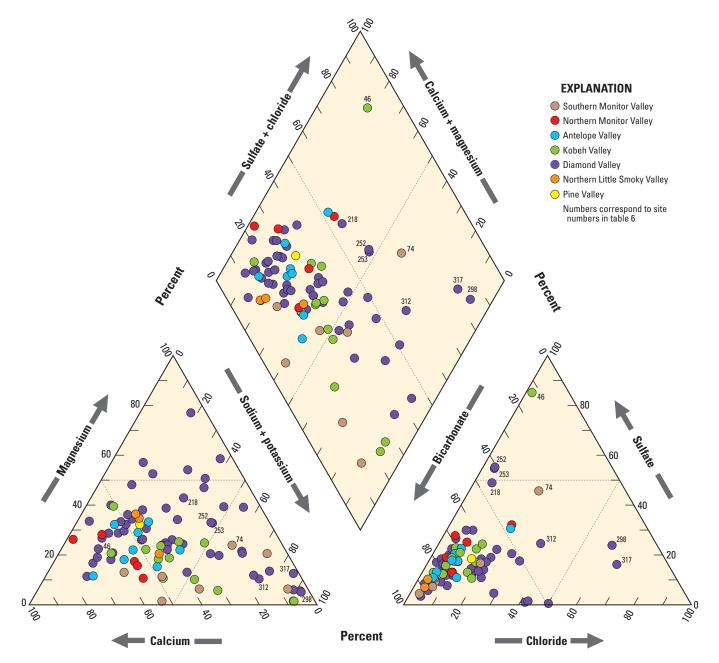



Figure 8. Geology, groundwater-level contours, and sites sampled for groundwater chemistry and chemical typing, Diamond Valley flow system and adjacent basins, central Nevada, 1954–2012. JA1097

Figure 9. Chemical type of groundwater in the Diamond Valley flow system, central Nevada. Relative concentrations of cations and anions are presented in the lower left and right triangles, respectively; relative concentrations are projected onto the central diamond to illustrate the combined major-ion chemistry.

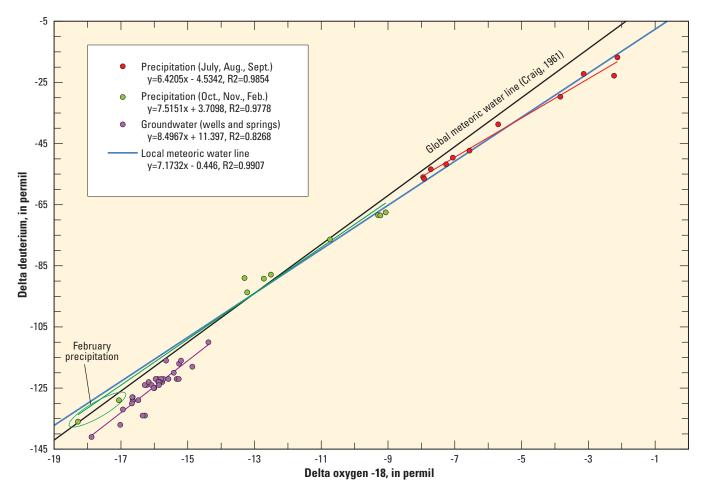


Figure 10. Relation between oxygen-18 and deuterium for precipitation, groundwater, and spring water samples, Diamond Valley flow system and adjacent valleys, central Nevada.

JA1099 SE ROA 786 Generally, the LMWL indicated precipitation that falls in the DVFS was isotopically similar to the GMWL, with only slight evaporative enrichment during the warmer months, as evidenced by the shallower slope in those data (fig. 10). Precipitation data collected in warmer months in the DVFS exhibited a seasonal variation due to evaporation when compared with samples collected during cooler months. The trend line defined by warmer temperature data exhibited a shallower slope than either the GMWL or the trend line defined by the cooler temperature data. The isotopic signature from coolmonth data was comparable to the GMWL.

Most groundwater signatures (including springs) are similar to cool-season precipitation but slightly enriched in oxygen-18 compared to the GMWL and the LMWL (fig. 10). Similar signatures among groundwater and cool-season precipitation indicates that groundwater is, in part, derived from cool-season precipitation under current climate conditions. The slight enrichment in oxygen-18 relative to deuterium could reflect groundwater interaction with warmer waters along deep flow paths (Drever, 1988, Clark and Fritz, 1997). Increased temperature can increase the solubility of minerals and cause a shift in oxygen-18 (Palmer and Cherry, 1984; Thomas and others, 1996).

Isotopic and major-ion data collected from Fish Creek Springs water in northern Little Smoky Valley were compared to isotopic and major-ion data collected from wells in southern Antelope Valley to assess interbasin flow. Although groundwater-level altitudes in southern Antelope Valley indicated the potential for flow toward northern Little Smoky Valley, the isotopic and major-ion data were inconclusive, and therefore could not be used to support this inference.

> JA1100 SE ROA 787

Table 6. Selected water-chemistry data, Diamond Valley flow system and adjacent basins, central Nevada, 1954–2013.	Site locations are shown in figures 2, 5, and 8. mm/dd/yyyy, month/day/year, °C, degrees Celsius; µS/cm, microsiemens per centimeter; mg/L, milligrams per liter; N/A, not applicable; —, no data; permil, parts per thousands; <, less than; M, presence verified but not quantified]	Well depth, Water Dissolved, Alkalinity, Calcium, Mag- Sodium, Potassium, Bicarbonate,
Table 6. Selected water	[Site locations are shown in figure: permil, parts per thousands; <, less	i

	ferreren h											:				
Site number	er Hydrographic area	U.S. Geological Survey station identifier	Site type	Sample date (mm/dd/yyyy)	Well depth, below land surface, (feet)	Water tempera- ture (°C)	pH, field standard units	specific conduc- tance (µS/cm)	Dissolved, Alkalinity, oxygen as CaCO3 (mg/L) (mg/L)	Alkalinity, as CaCO3 (mg/L)	Calcium, dissolved (mg/L)	Mag- nesium, dissolved (mg/L)	Sodium, I dissolved (mg/L)	Potassium, B dissolved (mg/L)	Potassium, Bicarbonate, I dissolved as HCO3 (mg/L) (mg/L)	Chloride, dissolved (mg/L)
1	Kobeh Valley	393214116212402	atmospheric	07/17/2012	N/A	N/A										
				08/20/2012	N/A	N/A										
				09/10/2012	N/A	N/A										
				10/17/2012	N/A	N/A										
				11/27/2012	N/A	N/A										
0	Kobeh Valley	393711116124501	atmospheric	07/16/2012	N/A	N/A				I		I				
				08/21/2012	N/A	N/A										
				09/11/2012	N/A	N/A										
				10/17/2012	N/A	N/A										
				11/28/2012	N/A	N/A										
				02/0)8/2013	N/A	N/A			I	I		I				
ю	Kobeh Valley	393553116252401	atmospheric	08/20/2012	N/A	N/A										
				09/10/2012	N/A	N/A										
				10/17/2012	N/A	N/A										
				11/27/2012	N/A	N/A										
				02/08/2013	N/A	N/A										
4	Kobeh Valley	393555116094802	atmospheric	07/16/2012	N/A	N/A										
				08/21/2012	N/A	N/A										
				09/11/2012	N/A	N/A										
				10/17/2012	N/A	N/A										
				11/28/2012	N/A	N/A										
38	Southern Monitor Valley	384930116430000	spring	05/07/1967	N/A	35.0	7.5	250			6.4	0.1	5.2	1.9	110	7.9
39	Northern Monitor Valley	390445116382000	spring	05/09/1967	N/A	44.5	7.7	550		I	51	11	1.5	13	266	10
				06/22/1967	N/A	50.0		553			49	11	1.5	0.13	268	11
40	Northern Monitor Valley	390628116320800	spring	05/09/1967	N/A	15.5	7.4	267			29	3.5	18	4.7	125	9.8
41	Antelope Valley	390508116191800	spring	08/05/1967	N/A		7.4	260			26	4.9	20	4.8	120	12
42	Antelope Valley	390634116205300	spring	08/05/1967	N/A	17.0	7.7	332			39	14	9.5	2.9	178	6.3
46	Kobeh Valley	393400116392401	spring	$^{1}08/05/2008$	N/A	15.0	7.0	1,760	1.3	143	260	53.3	88	1.23	174	17.2
49	Diamond Valley	392904115565501	spring	205/07/1958	N/A	8.9	7.6	476			69	10	15	1.2	242	6.7
ନ୍ତ JA1101	Diamond Valley	393316115540501	spring	¹ 08/07/2008	N/A	11.0	7.6	425	7.8	219	63.7	Q	13.5	0.91	267	6.66

Selected water-chemistry data, Diamond Valley flow system and adjacent basins, central Nevada, 1954–2013.—Continued Table 6.

[Site locations are shown in figures 2, 5, and 8. mm/dd/yyyy, month/da/year; °C, degrees Celsius; N/A, not applicable; mg/L, milligrams per liter; µg/L, micrograms per liter; permil, parts per thousands; <, less than; —, no data; M, presence verified but not quantified]

	Inaminanh ion ina namina															
Site number	te Hydrographic area iber	U.S. Geological Survey station identifier	Sulfate dissolved (mg/L)	Total dissolved solids (mg/L)	Aluminum, dissolved (µg/L)	Arsenic, dissolved (µg/L)	Fluoride, dissolved (mg/L)	lron, dissolved (µg/L)	Lithium, dissolved (µg/L)	Barium, dissolved (µg/L)	Boron, dissolved (µg/L)	Silica, dissolved (mg/L)	Strontium, dissolved (mg/L)	Nitrate (mg/L)	Hydrogen 2/1 ratio (permil)	Oxygen 18/16 ratio (permil)
1	Kobeh Valley	393214116212402												I	-47.30	-6.56
															-22.80	-2.23
															-56.00	-7.95
															-76.40	-10.74
															-89.20	-12.72
2	Kobeh Valley	393711116124501													-49.60	-7.06
															-29.70	-3.84
															-56.50	-7.92
															-68.50	-9.23
															-93.70	-13.22
															-136	-18.29
3	Kobeh Valley	393553116252401													-16.80	-2.13
															-51.80	-7.26
															-68.40	-9.30
															-89.00	-13.30
															-129	-17.06
4	Kobeh Valley	393555116094802													-38.70	-5.70
								ĺ	ĺ	I		ĺ			-22.20	-3.14
															-53.40	-7.72
															-67.50	-9.07
															-87.90	-12.51
38	8 Southern Monitor Valley	384930116430000	20	187	<0.1		1.9	<0.01	Μ		Μ	56	Μ	1.1		
39	9 Northern Monitor Valley	390445116382000	55	348	<0.1		2	<0.01	Μ		Μ	35	Μ	<0.1		
			53	380	$<\!0.1$	Μ	2.1	Μ	Μ		М	35	М	<0.1		
40	0 Northern Monitor Valley 390628116320800	390628116320800	16	147	<0.1		0.2	<0.01	Μ		Μ	42	Μ	1.5		
41	1 Antelope Valley	390508116191800	13	223	Μ	I	0.5	Μ	Μ		М	56	М	<0.023		
42	2 Antelope Valley	390634116205300	17	218	Μ		0.2	Μ	Μ		Μ	26	Μ	0.34		
46	6 Kobeh Valley	393400116392401	889	1,520			2.99								-129	-16.48
49	9 Diamond Valley	392904115565501	41	303			0.4	0			0.1	39		1.5		
्र A1102	0 Diamond Valley	393316115540501	8.84	245			0.19								-117	-15.26

Selected water-chemistry data, Diamond Valley flow system and adjacent basins, central Nevada, 1954–2013. Table 6.

36

[Site locations are shown in figures 2, 5, and 8. mm/dd/yyyy, month/day/year; °C, degrees Celsius; µS/cm, microsiemens per centimeter; mg/L, milligrams per liter; N/A, not applicable; --, no data;

Site number	er Hydrographic area	U.S. Geological Survey station identifier	Site type	Sample date (mm/dd/yyyy)	Well depth, below land surface, (feet)	Water tempera- ture (°C)	pH, field standard units	Specific conduc- tance (µS/cm)	Dissolved, oxygen (mg/L)	Alkalinity, as CaCO3 (mg/L)	Calcium, dissolved (mg/L)	Mag- nesium, dissolved (mg/L)	Sodium, dissolved (mg/L)	Potassium, E dissolved (mg/L)	Bicarbonate, as HCO ₃ (mg/L)	Chloride, dissolved (mg/L)
53	Diamond Valley	395415115524301	spring	205/17/1966	N/A	20.6	7.8	583			73	22	23	5.1	318	6.5
				07/14/1981	N/A	21.0	6.9	555	3.1		69	22	21	4.6	320	6.9
56	Diamond Valley	395628116042801	spring	$^{2}04/16/1963$	N/A	34.4	7.6	529			55	21	30	9	288	17
				07/13/1981	N/A	39.0	6.7	515	1.4		54	18	30	6.1	270	15
58	Diamond Valley	400911116004701	spring	209/03/1965	N/A	9.4	8.2	631			8.8	78	33		345	14
59	Northern Little Smoky Valley	391624116020501	spring	07/19/2012	N/A	19.4	7.0	637	3.2	302	65.1	31	30.4	7.21	368	8.31
60	Northern Little Smoky Valley	391638116021601	spring	70/19/2012	N/A	15.6	7.4	618	9.0	301	65.1	31.3	27.2	6.81	366	8.58
62	Pine Valley	395412116081601	spring	$^{1}11/03/2008$	N/A	11.0	7.0	460	4.9	236	61.1	25.6	33	2.14	288	24
				09/22/2010	N/A	12.3	7.3	570	4.2	243	59.8	24.4	32.8	2.03		24.3
				06/27/2011	N/A	11.9	7.6	545	4.4		58.9	25.1	31.6	1.96		24.5
				09/21/2011	N/A	12.8	7.7	535	4.1	233	57.8	24.6	31	2.06		24.2
				06/12/2012	N/A	10.6	7.5	585	3.8	240	63.9	27.9	34.4	2.11	6197	24.2
				09/12/2012	N/A	12.3	7.5	572	3.6	241	61.6	25.9	33.1	2.02		24.6
65	Southern Monitor Valley	384320116443700	well	05/07/1967		6.0	7.5	437			4.1	7.1	43	6.5	240	10
68	Southern Monitor Valley	384730116481000	well	05/07/1967		6.5	7.1	98			12	1.6	5.5	0.8	51	1.8
69	Southern Monitor Valley	384736116481801	well	108/04/2008	154	11.5	6.5	120	6.3	54	11.8	1.7	10.7	1.12	66	1.3
70	Southern Monitor Valley	384926116474501	well	108/04/2008	30	11.5	7.2	485	2.5	154	34.4	3.59	53.9	7.05	187	30.5
71	Southern Monitor Valley	385220116435500	well	07/25/1967	4,353		8.5	615			8.6	5	108	29	310	13
74	Southern Monitor Valley	385600116425700	well	05/09/1967		8.5	7.6	1430		I	52	43	195	6.3	263	121
75	Northern Monitor Valley	390150116403801	well	07/18/2012	192	17.1	7.7	362	5.8	125	48.3	13.7	9.23	1.44	153	5.04
81	Northern Monitor Valley	391503116401001	well	304/14/1964		15.6	7.6	460			50	8.8	31		182	15
84	Northern Monitor Valley	392445116414802	well	304/14/1964		21.7	7.8	579			62	12	36		160	43
87	Antelope Valley	392445116414800	well	05/09/1967		13.5	7.7	551			55	14	25	8	155	41
88	Antelope Valley	391114116185101	well	07/17/2012	174	15.2	7.7	361	5.6	124	53.9	5.29	10.8	5.26	151	10.9
90	Antelope Valley	391342116194401	well	07/17/2012	190	16.8	7.7	408	2.4	149	51	9.72	21.3	4.51	180	10.6
96	Antelope Valley	391935116144901	well	$^{1}11/06/2008$	186	12.5	7.6	530	0.6	229	55.6	18	27.2	8.98	280	14
				07/17/2012	186	14.0	7.8	415	2.7	151	42.7	15.8	19.9	6.53	183	11
66	Antelope Valley	392310116125001	well	304/16/1964		16.1	8.2	355			31	15	21		164	13
-																

JA1103

Selected water-chemistry data, Diamond Valley flow system and adjacent basins, central Nevada, 1954–2013.—Continued Table 6.

[Site locations are shown in figures 2, 5, and 8. mm/dd/yyyy, month/day/year; °C, degrees Celsius; N/A, not applicable; mg/L, milligrams per liter; µg/L, micrograms per liter; permil, parts per thousands; <, less than; --, no data; M, presence

3 3	Site number	er Hydrographic area	U.S. Geological Survey station identifier	Sulfate dissolved (mg/L)	Total dissolved solids (mg/L)	Aluminum, dissolved (µg/L)	Arsenic, dissolved (µg/L)	Fluoride, dissolved (mg/L)	lron, dissolved (µg/L)	Lithium, dissolved (µg/L)	Barium, dissolved (µg/L)	Boron, dissolved (µg/L)	Silica, dissolved (mg/L)	Strontium, dissolved (mg/L)	Nitrate (mg/L)	Hydrogen 2/1 ratio (permil)	Oxygen 18/16 ratio (permil)
Matrix Signation S	53	Diamond Valley	395415115524301	51	358			0.4	0.01			0	19		1.1		
0 0				53	356			0.4	<10	80	06	70	21	380		-122	-15.90
Matrix 33 323	56		395628116042801	33	330			0.5	0			0.1	30		0.6		
No. Diamond Voltey 40001116004701 106				35	328			0.4	<10	50	180	110	36	220		-125	-16.00
90 Number late Sendy barge 30/641102001 34 370 23 37	58		400911116004701	106													
0 Number lifte Smoky augry 3068110021601 244 354 22 13 045 73 70 107 80 162 144 - - - - - - - - - 123 2 Pau Vally, Mary 39412110681001 431 343 - 0 0.36 - 0 - 0 - 0 - 0 - 0 - 0 <	59		391624116020501	34	370	2.2	2.8	0.53	3.2	73.7	82.1	66	21.5	422		-120	-15.42
02 1mm of the value 334111668101 411 431 432 431 <th>60</th> <td></td> <td>391638116021601</td> <td>24.4</td> <td>354</td> <td>2.2</td> <td>1.3</td> <td>0.45</td> <td>7.3</td> <td>70</td> <td>107</td> <td>89</td> <td>16.2</td> <td>414</td> <td>I</td> <td>-123</td> <td>-15.76</td>	60		391638116021601	24.4	354	2.2	1.3	0.45	7.3	70	107	89	16.2	414	I	-123	-15.76
426 322 0.26 -60 <	62		395412116081601	43.1	348			0.28					1	I	Ι	-122	-15.33
412 534 026 532 100 22 335 425 349 43 43 03 87 238 101 124 213 348 431 347 -338 43 024 -32 194 100 124 213 348 431 347 131 011 024 -32 194 100 124 213 346 500 347 241 10 -4 021 -0 10 14 - 213 347 500 347 241 - - 01 - 10 14 10 11 11 500 347 347 101 - 011 10 11 11 11 11 11 11 11 11 11 11 11 11				42.6	342			0.26	<6.0						3.51		
42.5 34.9 4.3 0.3 8.7 2.8 10 124 - 213 3.48 - 43 347 -3.8 4.3 0.24 5.3 193 104 - 213 3.47 - 3.4 - 221 3.47 - 3.47 - 3.47 - 3.47 - 3.47 - 214 106 146 - 213 3.47 - 10 - 214 - 213 3.47 - 10 3.47 - 10 - 214 10 14 - 213 3.47 - 10				43.2	354			0.26	<3.2		100		25	203	3.55		
43 347 <3.8 4.3 0.24 <3.2 21,4 100 146 - 21 3.67 1.23 43.1 33.2 10.3 1.3 32 10.3 4.3 3.61 4.3 3.61 4.3 3.61 4.3 3.61 4.3 3.61 4.3 4.3 3.61 4.3 <t< td=""><th></th><td></td><td></td><td>42.5</td><td>349</td><td>4.3</td><td>4.3</td><td>0.3</td><td>8.7</td><td>22.8</td><td>101</td><td>124</td><td> </td><td>213</td><td>3.48</td><td> </td><td> </td></t<>				42.5	349	4.3	4.3	0.3	8.7	22.8	101	124		213	3.48		
43.1 33.2 10.8 4.2 0.2 4.3 10.9 10.7 10.4 10.7 10				43	347	<3.8	4.3	0.24	<3.2	21.4	100	146		221	3.67	-122	-15.27
Southen Monitor Valley SH32011644700 21 311 <01 <0 <01 <0 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <01 <0				43.1	352	10.8	4.2	0.23	<3.2	19.9	102	144		215			
Southern Monitor Valley 3473011648100 5.2 77 (0.1 (-	65	Southern Monitor Valley		21	311	<0.1		0.7	<0.01	Μ		Μ	52	Μ	<0.1		
Suthen Monitor Valley 38473611648101 251 97 -0 10 - - - - - - - 10 - 10 Southen Monitor Valley 38426116474501 384 342 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <th>68</th> <td></td> <td></td> <td>5.2</td> <td>77</td> <td><0.1</td> <td> </td> <td><0.1</td> <td>Μ</td> <td><0.01</td> <td> </td> <td>Μ</td> <td>25</td> <td>Μ</td> <td><0.1</td> <td> </td> <td> </td>	68			5.2	77	<0.1		<0.1	Μ	<0.01		Μ	25	Μ	<0.1		
Southern Monitor Valley 3849.6116474501 384 342 - 101 Noth	69			2.51	76	I		0.12					I		I	-116	-15.65
Bouthern Monitor Valley 38520116435500 21 388 <0.1 - M	70			38.4	342		l	0.36		I			ĺ	l		-110	-14.38
Bouther Monitor Valley 38560116425700 315 988 <0.1 0.2 M M M 23 M 0.1 14 Northern Monitor Valley 39150116403801 49.5 224 2.2 0.08 3.2 7.17 50.6 36 2.3 218 124 Northern Monitor Valley 315011640101 55 0.08 3.2 7.17 50.6 36 23 218 124 Northern Monitor Valley 315011641400 55	71	Southern Monitor Valley		21	388	<0.1		2.3	Μ	Μ		Μ	33	Μ	0.1		
Northere Manifor Valley 30150116403801 455 224 22 0.08 3.2 7.17 50.6 36 2.32 218 124 Northern Monitor Valley 391503116401001 55	74		385600116425700	315	988	<0.1		0.2	М	Μ		Μ	23	М	0.1		
Northern Monitor Valley 39150311640101 55	75			49.5	224	2.2		0.08	3.2	7.17	50.6	36	23.2	218		-124	-16.23
Northern Monitor Yalley 392445116414802 88	81	Northern Monitor Valley	391503116401001	55													
87 Antelope Valley 392445116414800 79 375 1 - 0.3 <0.01 M - M 50 M 0.61 - 88 Antelope Valley 39114116185101 39.4 255 11.1 4 0.13 23.5 9.19 52.4 57 275 - -116 90 Antelope Valley 39134116194401 34.4 273 4.6 1.5 0.09 3.2 10.7 195 71 36.3 244 - -122 90 Antelope Valley 39133116144901 24.9 373 - - - - - - - - - 122 - -122 91 Antelope Valley 391935116144901 24.9 2.5 2.9 0.23 14.3 17.3 112 70 48.2 291 - - - - - - - - - - - 123 9 Antelope Valley 39193511614901 32 289 2.24 13 71	8			88													
88 Antelope Valley 391114116185101 39.4 255 1.1 4 0.13 23.5 9.19 57 43.7 275 -116 90 Antelope Valley 391342116194401 34.4 273 4.6 1.5 0.09 3.2 10.7 195 71 36.3 244 -122 90 Antelope Valley 391342116194401 24.9 373 0.62 -123 -123 96 Antelope Valley 39135116144901 24.9 373 -123 97 Antelope Valley 3913511614201 24.9 2.5 2.9 0.23 14.3 17.3 112 70 48.2 291 -124 9 Antelope Valley 392310116125001 32 -124	87	Antelope Valley	392445116414800	<i>4</i>	375	1		0.3	<0.01	Μ		Μ	50	Μ	0.61		
00 Antelope Valley 391342116194401 34.4 273 4.6 1.5 0.09 3.2 10.7 195 71 36.3 244 -122 06 Antelope Valley 39135116144901 24.9 373 -0 0.62 -12 -123 06 Antelope Valley 391935116144901 24.9 373 0.62 123 -123 -124 -124 -123 -123 -124 -124 -124 -124 -124 -124 -124 123 123 124 124 124 124 124 124 124 124 124 124 124 <	88		391114116185101	39.4	255	11.1	4	0.13	23.5	9.19	52.4	57	43.7	275		-116	-15.20
96 Antelope Valley 391935116144901 24.9 373 - - 0.62 - - - - - - 123 10 41.6 289 2.5 2.9 0.23 14.3 17.3 112 70 48.2 291 - - 124 99 Antelope Valley 392310116125001 32 - - - - - - - - 124	90		391342116194401	34.4	273	4.6	1.5	0.09	3.2	10.7	195	71	36.3	244		-122	-15.96
41.6 289 2.5 2.9 0.23 14.3 17.3 112 70 48.2 291 - -124 Antelope Valley 392310116125001 32 - - - - - - - - - - - - - - - - 124	96		391935116144901	24.9	373			0.62								-123	-16.17
99 Antelope Valley 392310116125001				41.6	289	2.5	2.9	0.23	14.3	17.3	112	70	48.2	291		-124	-16.08
	66		392310116125001	32													

Selected water-chemistry data, Diamond Valley flow system and adjacent basins, central Nevada, 1954–2013. Table 6.

[Site locations are shown in figures 2, 5, and 8. mm/dd/yyyy, month/day/year; °C, degrees Celsius; µS/cm, microsiemens per centimeter; mg/L, milligrams per liter; N/A, not applicable; —, no data; per mil., parts per thousands: <, less than; M, presence verified but not quantified]

Site number	sr Hydrographic area	U.S. Geological Survey station identifier	Site type	Sample date (mm/dd/yyyy)	Well depth, below land surface, (feet)	Water tempera- ture (°C)	pH, field standard units	specific conduc- tance (µS/cm)	Dissolved, oxygen (mg/L)	Alkalinity, as CaCO ³ (mg/L)	Calcium, dissolved (mg/L)	Mag- nesium, dissolved (mg/L)	Sodium, F dissolved (mg/L)	Potassium, B dissolved (mg/L)	Bicarbonate, as HCO ₃ (mg/L)	Chloride, dissolved (mg/L)
101	Antelope Valley,	392433116164500	well	06/23/1967		21.0	7.9	294			22	7.8	23	8.9	148	5
				08/05/1967		21.0	7.7	288			22	8.1	23	9.4	146	4.8
116	Kobeh Valley	392956116332201	well	$^{1}08/05/2008$		13.0	7.2	293	3.2	92	27.8	3.77	23.6	6.33	112	15.7
119	Kobeh Valley	393022116414201	well	$^{1}08/05/2008$	320	16.0	6.8	277	5.8	98	19.1	3.18	27.3	5.26	120	15.1
121	Kobeh Valley	393043116133201	well	$^{1}11/05/2008$	331	10.5	7.9	448		152	24.9	14.1	48	6.3	185	27.6
125	Kobeh Valley	393129116212800	well	05/09/1967		17.0	8.3	320			4.8	0.7	59	11	148	5.5
				06/23/1967		16.5	8.2	321			6.6	0.7	57	11	149	5.3
				108/06/2008		16.5	8.2	306	0.8	110	4.26	0.562	55.6	8.98	134	6.64
126	Kobeh Valley	393129116212901	well	06/13/2012		17.7	8.8	319	0.0	130	5.17	0.694	65.1	11.6	6107	6.13
				49/10/2012						249	5.13	0.696	63.9	11.9		6.06
132	Kobeh Valley	393246116280501	well	$^{1}08/06/2008$		13.0	7.6	603	6.2	243	41.8	4.89	90.8	6.42	297	15.7
143	Kobeh Valley	393555116094801	well	07/18/2012	24	10.7	7.7	505	2.7	148	45.1	15.4	37.4	5.85	176	25.4
158	Kobeh Valley	393954116104001	well	111/06/2008	630	13.0	8.2	426	2.7	131	43.4	12.1	26.7	5.76	160	20.4
159	Kobeh Valley	393957116103001	well	$^{1}11/06/2008$	201	13.5	7.6	443	0.4	154	33.2	14.5	37.4	8.11	187	10.1
160	Kobeh Valley	394036116183401	well	06/14/2012	139	15.1	7.7	411	0.0	205	47.6	22.4	9.06	1.39	6168	4.19
174	Kobeh Valley	394406116310201	well	305/19/1964			7.8	186			16	4.4	17	I	80	9
179	Kobeh Valley	394420116263101	well	305/19/1964			8.2	280			26	6.3	23		132	10
192	Diamond Valley	393030115573000	well	05/09/1967	I	8.5		489			64	17	12	3.3	226	9.8
193	Diamond Valley	393244116024401	well	$^{1}11/05/2008$	338	10.0	7.4	389	5.3	188	45	21.2	7.62	1.16	229	4.29
197	Diamond Valley	393353116023001	well	$^{2}08/19/1965$		0.0	7.5	389			37	27	12		237	7.4
201	Diamond Valley	393422116042501	well	108/06/2008	181	18.0	7.0	828	2.3	303	66.8	28.5	69.8	8.54	370	54.2
202	Diamond Valley	393422116042502	well	$^{1}08/06/2008$	101	12.5	7.4	1,100	4.6	285	56.4	28.1	142	12	347	124
204	Diamond Valley	393500115580500	well	05/09/1967		13.0	7.8	650			73	22	17	3.4	193	49
206	Diamond Valley	393509116000301	well	205/09/1966	213	14.4	7.6	467			51	20	17	5.1	220	14
208	Diamond Valley	393536116015801	well	205/05/1966	175	18.3	7.8	760			72	25	62	8.2	398	31
213	Diamond Valley	393710115584000	well	08/05/1967			7.6	368			50	8.9	16	2.6	210	7.5
214	Diamond Valley	393714116000301	well	$^{2}08/19/1965$	177	12.2	7.6	806			LT LT	28	79		382	59
216	Diamond Valley	393720115585000	well	08/05/1967			7.6	369			47	9.8	15	2.4	189	11
217	Diamond Valley	393724115580201	well	207/12/1966		15.6	8.0	411			45	20	20		210	17
218	Diamond Valley	393731115570301	well	208/17/1965	173	11.1	7.8	335			21	22	31		116	6
A 219	Diamond Valley	393814115565700	well	08/05/1967			7.7	469			66	14	14	1.2	211	13

Site number	Hydrographic area	U.S. Geological Survey station identifier	Sulfate dissolved (mg/L)	Total dissolved solids (mg/L)	Aluminum, dissolved (µg/L)	Arsenic, dissolved (µg/L)	Fluoride, dissolved (mg/L)	lron, dissolved (µg/L)	Lithium, dissolved (µg/L)	Barium, dissolved (µg/L)	Boron, dissolved (µg/L)	Silica, dissolved (mg/L)	Strontium, dissolved (mg/L)	Nitrate (mg/L)	Hydrogen 2/1 ratio (permil)	Oxygen 18/16 ratio (permil)
101 /	Antelope Valley	392433116164500	21	314	<0.1	Μ	0.5	Μ	М		Μ	75	Μ	0.2		
			19	248	Μ		0.7	Μ	Μ		Μ	71	Μ	0.2		
116 F	Kobeh Valley	392956116332201	22.9	231			0.18							1	-125	-16.02
119 F	Kobeh Valley	393022116414201	17.5	207			0.16								-124	-16.29
121 F	Kobeh Valley	393043116133201	22.3	283			0.48								-132	-16.94
125 F	Kobeh Valley	393129116212800	22	229	<0.1	0	3.4	<0.01	Μ		Μ	62		<0.1		I
			22	259	<0.01	Μ	3.4	<0.03	Μ		Μ	Μ		<0.1		
			21.8	234			3.23								-129	-16.65
126 F	Kobeh Valley	393129116212901	21.7	249	2.9	27.5	2.79	3.2	21.2	96.1	213		75.8		-130	-16.67
			21.0	249	3.6	26.8	0.29	<3.2	23.7	95.4	210	I	74.5	<0.001		
132 F	Kobeh Valley	393246116280501	36.8	411			0.76								-122	-15.73
143 F	Kobeh Valley	393555116094801	56.1	329	2.2	8.3	0.31	5.8	21.1	39.3	66	43.9	306		-128	-16.65
158 F	Kobeh Valley	393954116104001	44.6	313			0.31								-137	-17.02
159 F	Kobeh Valley	393957116103001	48.3	277			0.54								-141	-17.88
160 F	Kobeh Valley	394036116183401	21.2	241	5.4	2.9	0.07	29	4.49	138	31		157		-128	-16.66
174 F	Kobeh Valley	394406116310201	19		I	I		I	I	I		I	I	Ι		I
179 F	Kobeh Valley	394420116263101	18						I							
192 I	Diamond Valley	393030115573000	56	338	<0.1	l	0.2	<0.01	Μ		М	33	Μ	0.97		I
193 I	Diamond Valley	393244116024401	17.9	207			0.07							1	-122	-15.80
197 I	Diamond Valley	393353116023001	25													ļ
201 I	Diamond Valley	393422116042501	54.8	434			0.28								-123	-15.88
202 I	Diamond Valley	393422116042502	96.1	654		I	0.19	I							-123	-15.84
204 I	Diamond Valley	393500115580500	11	448	<0.1		0.1	<0.01	<0.01		Μ	33	Μ	0.02		
206 I	Diamond Valley	393509116000301	45	302			0.3	0			0	39		2.7		I
208 I	Diamond Valley	393536116015801	52	475			0.5	0.01			0.1	28		0.5		
213 I	Diamond Valley	393710115584000	11	248	<0.1	l	0.2	<0.01	<0.01		М	27	Μ	0.27		I
214 I	Diamond Valley	393714116000301	80													
216 I	Diamond Valley	393720115585000	17	246	<0.1		0.2	Μ	Μ		М	29	Μ	0.77		
217 I	Diamond Valley	393724115580201	40													I
218 I	Diamond Valley	393731115570301	100		I	I		I		I			I			I
219 I	Diamond Valley	393814115565700	50	302	<0.1		0.1	Μ	Μ		Μ	17	Μ	1		

Selected water-chemistry data, Diamond Valley flow system and adjacent basins, central Nevada, 1954–2013. Table 6.

40

[Site locations are shown in figures 2, 5, and 8. mm/dd/yyyy, month/day/year; °C, degrees Celsius; µS/cm, microsiemens per centimeter; mg/L, milligrams per liter; N/A, not applicable; —, no data;

	Hydrographic area	U.S. Geological Survey station identifier	Site type	Sample date (mm/dd/yyyy)	Well depth, below land surface, (feet)	Water tempera- ture (°C)	pH, field standard units	Specific conduc- tance (µS/cm)	Dissolved, oxygen (mg/L)	Alkalinity, as CaCO ³ (mg/L)	Calcium, dissolved (mg/L)	Mag- nesium, dissolved (mg/L)	Sodium, dissolved (mg/L)	Potassium, Bi dissolved (mg/L)	icarbonate, as HCO3 (mg/L)	Chloride, dissolved (mg/L)
220	Diamond Valley	393818116002401	well	207/11/1966	112	14.4	7.8	878			78	26	73	12	406	54
223	Diamond Valley	393842115572201	well	205/20/1966	300	11.7	7.7	400			57	10	13	1.2	204	~
226	Diamond Valley	393915116011001	well	205/17/1966	186	15.6	7.8	60 <i>L</i>			74	25	43	6.8	368	30
234	Diamond Valley	394029116002401	well	$^{2}08/18/1965$	182	16.7	7.3	806			60	40	75		406	54
240	Diamond Valley	394049115535901	well	207/12/1966		11.7	7.8	198		I	28	9.2	2.1		109	6.8
243	Diamond Valley	394058115565701	well	205/17/1966	250	12.2	7.5	406			46	16	17	2.2	207	9
252	Diamond Valley	394220116055002	well	$^{1}11/04/2008$	375	12.5	7.8	1,020	1.9	226	45.4	45.2	118	3.32	276	15.9
253	Diamond Valley	394220116055001	well	$^{1}11/04/2008$	499	10.5	8.2	7997	1.4	230	45.6	45.4	121	3.34	281	16.1
258	Diamond Valley	394238115593301	well	208/17/1965	182	11.1	7.8	569			16	30	69		216	47
259	Diamond Valley	394230115594401	well	207/11/1966	182	12.8	8.2	749			26	22	121		264	80
264	Diamond Valley	394240116021101	well	205/18/1966		12.2	7.8	758			66	25	60	8.8	312	50
265	Diamond Valley	394240115532901	well	208/20/1965		11.7	7.3	207			66	69	41		400	34
270	Diamond Valley	394301115593301	well	207/11/1966	182	12.2	7.8	788			63	13	85	8.8	302	60
275	Diamond Valley	394413115574601	well	212/08/1965	56	11.7	7.8	506			32	15	72		244	40
276	Diamond Valley	394416116014201	well	209/02/1965		12.2	8.1	680		Ι	9.5	37	98		300	55
279	Diamond Valley	394431115520601	well	203/10/1954	50	12.2	7.4	602			78	36	27	5.5	356	16
281	Diamond Valley	394512116031001	well	205/17/1966	45	13.3	8.6	635		I	21	17	88	16	262	48
283	Diamond Valley	394545115585801	well	205/17/1966	22	13.3	8.1	1,430		Ι	46	21	224	22	354	180
288	Diamond Valley	394611115525101	well	$^{2}08/18/1965$	200	12.8	7.9	444		Ι	16	29	43		195	12
292	Diamond Valley	394613115553701	well	208/18/1965	222	13.9	8.1	325			32	18	18		190	7.4
298	Diamond Valley	394729116011201	well	209/02/1965	22	12.2	8.2	4110	I	I	24	27	873	I	396	883
299	Diamond Valley	394717116044901	well	$^{1}08/07/2008$	83	13.5	7.4	818	1.9	293	56	24.1	71	9.88	357	53.9
301	Diamond Valley	394806115541701	well	$^{2}08/18/1965$	I	15.6	8.0	427		I	18	33	32	I	231	11
312	Diamond Valley	394920115584801	well	205/17/1966	22	11.1	7.9	1300			26	22	216	26	374	220
313	Diamond Valley	394903115565801	well	209/02/1965	22	11.7	8.5	1,740			11	13	382		600	264
317	Diamond Valley	395020116030001	well	209/02/1965	22	12.8	8.2	3,890		I	15	61	768		427	912
318	Diamond Valley	395021115540901	well	209/02/1965	320	14.4	8.0	382	I		12	27	36		204	10
321	Diamond Valley	395100115593001	well	209/02/1965	22	12.8	8	1,230			23	13	244		352	231
				$^{1}11/05/2008$	22	10.5	8.2	1,340	0.6	390	40.2	17.3	218	20.6	476	200
324	Diamond Valley	395156116043901	well	209/02/1965	87	13.3	8.0	555			7.5	5.5	122	39	244	45
411				05/05/1966	87	16.7	8.3	560			41	27	39		264	25

Selected water-chemistry data, Diamond Valley flow system and adjacent basins, central Nevada, 1954–2013.—Continued Table 6.

[Site locations are shown in figures 2, 5, and 8. mm/dd/yyyy, month/da/year; °C, degrees Celsius; N/A, not applicable; mg/L, milligrams per liter; µg/L, micrograms per liter; permil, parts per thousands; <, less than; —, no data; M, presence verified but not quantified]

Mathematication Mathematic				Total												
210 Diamed Valiey 355811800.301 68 590 0 3 <	Site	U.S. Geological Survey station identifier	Sulfate dissolved (mg/L)	dissolved solids (mg/L)	Aluminum, dissolved (µg/L)	Arsenic, dissolved (µg/L)	Fluoride, dissolved (mg/L)	lron, dissolved (µg/L)	Lithium, dissolved (µg/L)	Barium, dissolved (µg/L)	Boron, dissolved (µg/L)	Silica, dissolved (mg/L)	Strontium, dissolved (mg/L)	Nitrate (mg/L)	Hydrogen 2/1 ratio (permil)	Oxygen 18/16 ratio (permil)
21 Dimond Valge 998311557201 34 242 0 1 0 1 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 2 2 2 1 2<	220	393818116002401	68	549			0.6	0			0.1	37		0.6		
210 Dimend Value 399911001100 45 444 6 6 6 7 6 6 7 6 6 7 <th< td=""><td>223</td><td>393842115572201</td><td>34</td><td>242</td><td> </td><td> </td><td>0.1</td><td>0.01</td><td> </td><td> </td><td>0</td><td>16</td><td> </td><td>2.8</td><td> </td><td> </td></th<>	223	393842115572201	34	242			0.1	0.01			0	16		2.8		
33.1 Dimmed Valge 340301165500 58	226	393915116011001	45	444			0.4	0			0.1	38		0.2		
310 Dimond Value 340001555550 35 55	234	394029116002401	68													
31 Diamod Value 39481155560 32 27 - 0 0 28 0 0 0 28 0 0 28 0 0 0 28 0	240	394049115535901	13											I		
23 Dimond vialgy 342011665002 25 65 67 6 62 64<	243	394058115565701	39	257			0.1	0			0	28		0.4		
35 Dimond Value 3942011665600 25 67 0.7	252	394220116055002	295	629	Ι	I	0.72	Ι	Ι	Ι	Ι	Ι		Ι	-134	-16.28
S8 Diamod Valley 342311553301 67	253	394220116055001	295	679			0.7								-134	-16.35
259 Diamond Wiley 3942011559401 83 <	258	394238115593301	67											I		
36 Diamod Valge 394-01160:10 71 478 0.5 0.01 0.1 4.2 0.1 4.2 0.1 0.1 0.1 0.1 1 1	259	394230115594401	83													
35 Diamond Valley 39420115332901 156 <td>264</td> <td>394240116021101</td> <td>71</td> <td>478</td> <td> </td> <td> </td> <td>0.5</td> <td>0.01</td> <td> </td> <td> </td> <td>0.1</td> <td>42</td> <td> </td> <td>1</td> <td> </td> <td> </td>	264	394240116021101	71	478			0.5	0.01			0.1	42		1		
270 Diamod Valley 3943011553301 76 500 0.3 0 0.3 0 0.3 0 0.3 0 0.3 0 0.3 0 0.3 0 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.	265	394240115532901	156													
215 Diamond Valley 3941311574601 39	270	394301115593301	76	500			0.3	0			0.2	4		0.8		
276 Diamond Valley 39416116014201 65	275	394413115574601	39													
273 Diamod Valley 39431115320601 77 458 0 0 1 0 1 5.5 <	276	394416116014201	65													
381 Diamod Valley 3451116031001 34 371 0.3 0.01 0.3 8.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	279	394431115520601	LL	458			0.6	0.13			0.12	37		5.5		
33 Diamod Value 3945115558301 173 854 0.7 0.18 0.6 11 19 288 Diamod Value 3945111555101 73 0.7 0.18 0.6 11 19	281	394512116031001	34	371	ĺ		0.3	0.01	I		0.3	8.4	l	0.6		
388 Diamond Valley 346111555101 73	283	394545115585801	173	854			0.7	0.18			0.6	11		1.9		
292 Diamod Valley 3461311553701 25	288	394611115525101	73													
298 Diamod Valley 394729116011201 480 </td <td>292</td> <td>394613115553701</td> <td>25</td> <td> </td> <td></td> <td> </td> <td> </td>	292	394613115553701	25													
299 Diamond Valley 394717116044901 62.8 469 0.28	298	394729116011201	480													
301Diamond Valley 394806115541701 42 -1 <	299	394717116044901	62.8	469			0.28								-122	-15.58
312 Diamod Valley 39492011584801 5 718 0.6 0.02 0.5 15 2.5 313 Diamod Valley 3949011558801 15 0.6 0.02 0.5 15 2.5 313 Diamod Valley 3950211603000 308 0.6 0.02 0.5 1- 1-	301	394806115541701	42		I		I			I	I		I			
313Diamod Valley39490311556580115 $$ <	312	394920115584801	5	718	I		0.6	0.02			0.5	15		2.5		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	313	394903115565801	15		I			I				I		I		
318 Diamond Valley 395021115540901 35 -	317	395020116030001	308		I											
321 Diamond Valley 395100115593001 26 <td>318</td> <td>395021115540901</td> <td>35</td> <td> </td> <td></td> <td></td> <td> </td> <td></td>	318	395021115540901	35													
7.74 757 -0.57 118 324 Diamond Valley 395156116043901 42 346 0.4 0.01 0.1 26 0.6 45 10.6 10.6 10.6 10.6 10.6 10	321	395100115593001	26													
324 Diamond Valley 395156116043901 42 346 0.4 0.01 0.1 26 45 0.4 0.1 26			7.74	757			0.57								-118	-14.86
	324	395156116043901	42	346			0.4	0.01			0.1	26		0.6		
	11/		45													

Selected water-chemistry data, Diamond Valley flow system and adjacent basins, central Nevada, 1954–2013. Table 6.

[Site locations are shown in figures 2, 5, and 8. mm/dd/yyyy, month/day/year; °C, degrees Celsius; µS/cm, microsiemens per centimeter; mg/L, milligrams per liter; N/A, not applicable; —, no data; permil, parts per thousands; <, less than; M, presence verified but not quantified]

Site number	Hydrographic area	U.S. Geological Survey station identifier	Site type	Sample date (mm/dd/yyyy)	Well depth, below land surface, (feet)	Water tempera- ture (°C)	pH, field standard units	Specific conduc- tance (µS/cm)	Dissolved, oxygen (mg/L)	Dissolved, Alkalinity, C oxygen as CaCO3 d (mg/L) (mg/L)	alcium, issolved (mg/L)	Mag- nesium, dissolved (mg/L)	Sodium, I dissolved (mg/L)	Potassium, B dissolved (mg/L)	Potassium, Bicarbonate, d dissolved as HCO3 d (mg/L) (mg/L)	Chloride, dissolved (mg/L)
327	327 Diamond Valley	395255116051101	well	111/03/2008	98	16.5	7.8	550		250	58.2	24.7	34	7.64	306	23.8
330	330 Diamond Valley	395914116023301	well	205/05/1966		35.0	8.0	449			51	20	15	3.4	255	10
331	331 Diamond Valley	400116115534801	well	208/18/1965	I	I	8.1	506			5.1	42	50		268	15
332 j	332 Diamond Valley	400426116015001	well	$^{2}05/05/1966$	91	26.7	7.7	419			33	36	13		267	10
333 I	Diamond Valley	400726115525901	well	209/03/1965	9.5	11.1	8.1	588			35	25	34		263	21
338	Northern Little Smoky Valley	384048114341001	well	07/18/2012	166	16.2	7.9	302	6.6	109	28.4	7.95	21.4	6.64	132	7.23
			N/A	507/16/2012	N/A	N/A	N/A	\$	N/A	N/A	0.919	0.102	0.08	0.03	I	0.37

Selected water-chemistry data, Diamond Valley flow system and adjacent basins, central Nevada, 1954–2013.—Continued Table 6.

[Site locations are shown in figures 2, 5, and 8. mm/dd/yyyy, month/day/year; °C, degrees Celsius; N/A, not applicable; mg/L, milligrams per liter; µg/L, micrograms per liter; permil, parts per thousands; <, less than; —, no data; M, presence verified but not quantified]

Site number	rr Hydrographic area	U.S. Geological Survey station identifier	Sulfate dissolved (mg/L)	Total dissolved solids (mg/L)	Aluminum, dissolved (µg/L)	Arsenic, dissolved (µg/L)	Fluoride, dissolved (mg/L)	lron, dissolved (µg/L)	Lithium, dissolved (µg/L)	Barium, dissolved (µg/L)	Boron, dissolved (µg/L)	Silica, dissolved (mg/L)	Strontium, dissolved (mg/L)	Nitrate (mg/L)	Hydrogen 2/1 ratio (permil)	Oxygen 18/16 ratio (permil)
327	327 Diamond Valley	395255116051101	41.7	366			0.42								-123	-15.87
330	330 Diamond Valley	395914116023301	25	210			0.4	0	I		0	25		0.5		
331	331 Diamond Valley	400116115534801	52				I						I	I		
332	332 Diamond Valley	400426116015001	23		I			I						I		
333	333 Diamond Valley	400726115525901	20											I		
338	Northern Little Smoky Valley	384048114341001	25.8	214	7.1	4.9	0.34	4.8	21.7	35.3	104	50.8	240	I	-124	-15.86
			<0.0>	<20	4.5		<0.04	21.7	0.26	1.93		0.126	74.5		-117	-15.16
¹ San Report	¹ Sample values first published <i>in</i> Knochemmus, L.A., Berger, D.L., Moreo, M.T., and Smith, J.L., 2011, Data network, collection, and analysis in the Diamond Valley flow system, central Nevada: U.S. Geological Survey Open-File Report 2011–1089, 24 p. (<i>http://pubs.ages.gov/of/2011/1089</i>).	nochenmus, L.A., Berger, usgs.gov/of/2011/1089/).	D.L., Moreo,	M.T., and S	mith, J.L., 20)11, Data net	work, collect	ion, and anal	lysis in the Di	amond Valle	y flow syste	m, central Ne	svada: U.S. G	eological S	urvey Open	ı-File

³Sample values first published *in* Harrill, J., 1968, Hydrologic Response to Irrigation Pumping in Diamond Valley, Eureka, and Elko Counties, Nevada, 1950–65; State of Nevada, Department of Conservation and Natural Resources, Water Resources Bulletin 35, 85 p. (http://images.water.nv.gov/images/publications/water%20resources%20bulletins/Bulletin35.pdf).

f ³Sample values first published in Rush, F.E., and Everett, D.E., 1964. Ground-water appraisal of Monitor, Antelope, and Kobeh Valleys, Nevada: Nevada Department of Conservation and Natural Resources, Ground-Water Resources - Seconnaissance Report 50, 45 p. (http://images.water.nv.gov/images/publications/recom%20reports/rp130-monitor_antelope_kobeh_valley.pdf). 40 altity control sample, replicate. 50 altity control sample, field blank 6 vfalue calculated by multiplying alkalinity concentration by conversion factor (Hem, 1985, table 8).

Table 7. Specific conductance, sodium, chloride, and total dissolved-solids concentrations from selected sites along northerly flowpath in southern Diamond Valley, central Nevada, 1965–67. [μS/cm, microsiemens per centimeter; mg/L, milligrams per liter; —, no data]

Site number	Specific conductance (µS/cm)	Sodium dissolved (mg/L)	Chloride dissolved (mg/L)	Total dissolved solids (mg/L)
		Upgradient sites	S	
197	389	12	7.4	_
204	650	17	49	448
206	467	17	14	302
213	368	16	7.5	248
214	806	79	59	_
216	369	15	11	246
217	411	20	17	_
218	335	31	9	—
219	469	14	13	302
220	878	73	54	549
223	400	13	8	242
226	709	43	30	444
234	806	75	54	_
243	406	17	6	257
Average	533	32	24	338
		Mid-gradient site	es	
258	569	69	47	_
259	749	121	80	_
264	758	60	50	478
270	788	85	60	500
275	506	72	40	_
276	680	98	55	_
281	635	88	48	371
Average	669	85	54	450
		Down-gradient sit	tes	
283	1,430	224	180	854
292	325	18	7.4	_
298	4,110	873	883	
312	1,300	216	220	718
313	1,740	382	264	_
317	3,890	768	912	
318	382	36	10	
321	1,340	218	200	757
Average	1,815	342	335	776

Estimation of Groundwater-Budget Components

Groundwater budgets describe the balance of water moving into and out of a groundwater system. Groundwater budgets include components of outflow, components of inflow, and the change in aquifer storage (equation 1). Basin-scale groundwater-inflow components include precipitation-derived mountain-block recharge (in place), infiltration of streamflow and runoff, and subsurface inflow. Groundwater-outflow components include groundwater ET, groundwater withdrawals, and subsurface outflow.

Recharge +
$$GW_i - ET_{gw} - GW_o - P = \Delta Storage$$
 (1)

where

Recharge	is groundwater recharge from direct
	precipitation and infiltration of streamflow
	and runoff,
GW_i	is subsurface inflow of groundwater,
ET_{gw}	is groundwater discharge by evapotranspiration,
GW_o	is subsurface outflow of groundwater,
Р	is groundwater withdrawals, and
$\Delta Storage$	is the change in aquifer storage.

Groundwater discharge through springs and seeps is eventually lost as ET_{gw} , or it reenters the groundwater system as recharge; therefore, it was not considered a separate outflow component in undeveloped basins. The accuracy of a groundwater budget depends on the accuracy of the rates estimated for each of the components; small differences in some rates can produce large differences in annual-budget estimates.

Groundwater budgets in mostly undeveloped basins, such as southern and northern Monitor, Antelope, and Kobeh Valleys and Stevens Basin, were assumed to be in a general state of dynamic equilibrium, where inflow equals outflow, and net changes in storage are negligible. In contrast, substantial groundwater development in the southern part of Diamond Valley has altered the hydrologic flow system by substantially reducing groundwater storage and generating a groundwater cone of depression. Declining groundwater levels, especially in the southern part of Diamond Valley, have likely contributed to spring-flow loss in northern Diamond Valley and have induced a groundwater divide that could draw poor-quality water south toward the major groundwater development area. The groundwater budget for Diamond Valley must consider pumping and changes in ET_{gw} and groundwater storage.

Groundwater Discharge

Groundwater discharge by ET from areas of phreatophytes and by evaporation from playas is the largest natural outflow component in the DVFS. Groundwater predominantly discharges from topographically low areas, where groundwater is at or near the land surface, that are referred to as groundwater discharge areas (GDA). Groundwater withdrawals for irrigation, which were almost entirely in the southern part of Diamond Valley, represented the largest groundwater-outflow component of the post-development budget.

Evapotranspiration

Evapotranspiration was measured and ET_{gw} was estimated at four sites in Kobeh Valley using eddy-covariance and other micrometeorological data (Swinbank, 1951; Campbell and Norman, 1998; Foken and others, 2012). Groundwater discharge was computed as annual ET minus precipitation plus the change in soil-water storage. Most, if not all, precipitation falling directly onto the land surface in a GDA is eventually consumed by ET and, therefore, was assumed not to contribute to the regional groundwater-flow system. Surface-water contributions to ET in a GDA were assumed to be negligible. Site-based data were scaled to the basin and flow system using remote sensing and 30-year (1981–2010) PRISM precipitation model data.

Surface Energy Budget

Incoming and outgoing energy fluxes that constrain the energy available for ET describe the land-surface energy budget. The energy budget generally is partitioned into four principle components: net radiation (R_n), latent- (λE) and sensible-heat (H) fluxes, and the soil-heat flux at land surface (G). Based on the principle of energy conservation, available energy (difference between net radiation, R_n , and soil heat flux, G) is equal to additive turbulent fluxes of λE and H (equation 2):

$$R_n - G = \lambda E + H \tag{2}$$

where all components are in units of calories per second per square foot. Net radiation is the energy that drives ET and represents the difference between incoming and outgoing shortwave and longwave radiation. The latent-heat flux (λ E) is defined as the energy consumed during ET. The latent heat of vaporization (λ) is the amount of energy needed to evaporate a unit mass of water, and the E component of the latent-heat flux term is the mass flux of water vapor, or ET in ounces per second per square foot. Evapotranspiration can be converted to a rate of surface discharge by dividing by the density of water. Sensible-heat flux (H) is the heat energy convectively removed from the surface owing to temperature differences between the surface and atmosphere. The soil-heat flux at land surface (G) is positive when heat moves from the surface to the subsurface.

Latent- and sensible-heat fluxes were measured and computed using the eddy-covariance method, which measures the one-dimensional net transport of heat, mass, and momentum by eddies between surface and atmospheric boundaries (Foken and others, 2012). Eddies are turbulent air movements caused by wind, surface roughness, and convective heat flow at these boundaries (Swinbank, 1951; Campbell and Norman, JA1111 1998). The eddy-covariance method relies on high-frequency (10 Hertz, or Hz, in this study) measurements of fluctuations in vertical wind speed, air temperature, and water-vapor density to measure latent- and sensible-heat fluxes.

Site Selection and Characteristics

Groundwater discharge was estimated at four sites. These sites were selected and instrumented to measure ET and energy-budget components, groundwater levels, precipitation, soil-water content, and other variables affecting ET_{gw} (sites 1-4; fig. 2; table 1). All sites were in undisturbed vegetated areas on the valley floor in Kobeh Valley; three sites were in phreatophytic shrubland, and one site was in grassland (figs. 11A, B). The line-transect method (Smith, 1974) was used during spring 2012 to document plant-species dominance and measure canopy height and the percentage of canopy cover at the three shrubland sites. Surveys summarized measurements from four 328-ft transects extending north, west, south, and east from a point near each eddy-covariance instrument tripod (see "Instrumentation" section). Canopy height was computed as the average plant height measured across all transects (table 8). The length of the vertical projection of green (active) plant canopies along line transects was used to compute the percentage of canopy cover. Bare-soil cover included gaps between plants and under plant canopies. Percentage of canopy cover was computed as the ratio of the sum of individual measured canopy lengths across all transects to the total transect length (1,312 ft) and was assumed to represent the predominant ET measurement source area (table 8). Vegetation and soil characteristics were subsequently monitored at all ET sites during site visits, and photographs were taken periodically to document the greenness and vigor of vegetation and the presence or absence of soil moisture.

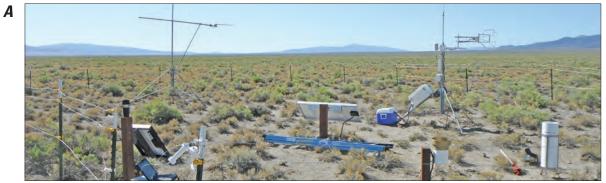
Site 1 was established at an altitude of about 6,099 ft on June 7, 2011, in an area of sparse shrubland (fig. 2; table 1). Vegetation density was evaluated in terms of vegetation cover and height. The site was characterized by about 15-percent vegetation cover (about 12-percent phreatophyte cover) and 85 percent bare soil (figs. 11*A*, *B*; table 8). The vegetation was composed of greasewood (*Sarcobatus*) *vermiculatus*, 16-percent relative canopy cover) and rabbitbrush (*Chrysothamnus spp.*, 62-percent relative canopy cover), with lesser amounts of non-phreatophytes (xerophytes, that is, plants adapted to an arid environment), including budsage (*Artemisia spinescens*) and sagebrush (*Artemisia tridentata*). Average canopy heights of greasewood and rabbitbrush were 0.9 and 0.4 ft, respectively. Volumetric soil-water content ranged from about 0.01 to 0.18 in³/in³ (fig. 12). Depth to groundwater measured in a collocated well (site 130; fig. 5; table 5) averaged 8.8 ft below land surface and ranged from about 8.7 to 9.1 ft (June 2011–September 2012; fig. 13).

Site 2 was established at an altitude of about 6,052 ft on July 8, 2010 (fig. 2; table 1). This site was characterized by about 16-percent vegetation cover (more than 99-percent phreatophytes) and 84 percent bare soil and was considered to represent moderate-to-dense shrubland (figs. 11A, B; table 8). Greasewood and rabbitbrush (39- and 35-percent relative canopy cover, respectively) were the dominant vegetation, with a lesser amount of saltgrass (Distichlis spicata; 26-percent relative canopy cover). Xerophytic vegetation was predominantly sagebrush. The average canopy heights of greasewood and rabbitbrush were 0.9 and 1.2 ft, respectively, and the average rabbitbrush height was three times that measured at site 1. Volumetric soil-water content ranged from about 0.10 to 0.25 in³/in³ (fig. 12). Depth to groundwater measured in a collocated well (site 150; fig. 5; table 5) averaged 2.3 ft below land surface and ranged from 1.7 to 2.6 ft (July 2010-September 2012; fig. 13).

Site 3 was established at an altitude of about 6,131 ft on July 7, 2010 (fig. 2; table 1). This site was characterized by about 14-percent vegetation cover (all phreatophytes) and 86-percent bare soil and was considered to represent moderate-to-dense shrubland. Shrubs were composed of greasewood (22-percent relative canopy cover) and rabbitbrush (25-percent relative canopy cover), whereas grasses were composed of undifferentiated bunch grass (25-percent relative canopy cover) and saltgrass (28 percent relative canopy cover; figs. 11*A*, *B*; table 8). Average canopy heights of greasewood and rabbitbrush were 1.3 and 2.1 ft, respectively, and were more than 1.5 times as tall as the same species measured at site 2. The average bunch grass height was about 0.5 ft.

 Table 8.
 Vegetation type, canopy cover, and height measured at four evapotranspiration sites, May 2012, Kobeh Valley, Nevada.

 [Bunch grass height represents the average height of the bulk of mass. —, no data]


	Cano	py cover		Phreatophy	/te shrubs		Phreatophyte grasses						
Site	(pe	rcent) ¹	Grease	asewood Rabbitbru		Rabbitbrush Bunch grass Saltgrass M		Rabbitbrush Bunch grass Saltgrass		s Saltgrass		Meadov	w grass
number	All plants	Phreatophytes	Canopy cover (percent) ¹	Average height (feet)	Canopy cover (percent) ¹	Average height (feet)	Canopy cover (percent) ¹	Average height (feet)	Canopy cover (percent) ¹	Average height (feet)	Canopy cover (percent) ¹	Average height (feet)	
1	14.9	11.6	2.4	0.9	9.2	0.4	0.0	_	0.0	_	0.0		
2	15.6	15.5	6.1	0.9	5.4	1.2	0.0	_	4.0	0.3	0.0	_	
3	14.1	14.1	3.1	1.3	3.5	2.1	3.5	0.5	4.0	0.3	0.0	_	
4	100.0	100.0	0.0		0.0		0.0		0.0		100.0	² 0.5	

¹ Total canopy cover for all four transects divided by the total transect length (1,312 feet); canopy cover was estimated from additive measurements of the vertical projection of green (active) plant canopies overlying line transects.

² Value represents the maximum height. Meadow grass height varied seasonally and with grazing practices

46 Budgets and Chemical Characterization of Groundwater for the Diamond Valley Flow System, Central Nevada, 2011–12

Site 1, sparse shrubland, August 31, 2011

Site 2, moderate-to-dense shrubland, July 21, 2011

Site 3, moderate-to-dense shrubland, August 31, 2011

Site 4, grassland, July 20, 2011

Photographs by C. Justin Mayers

Figure 11. Evapotranspiration sites, Kobeh Valley, central Nevada photographed *A*, laterally to show instrumentation and vegetation at sites 1–4, and, *B*, aerially from a location approximately 328 feet west of sites 1–3 to show vegetation distribution in an approximately 28-foot square footprint.

JA1113 SE ROA 800

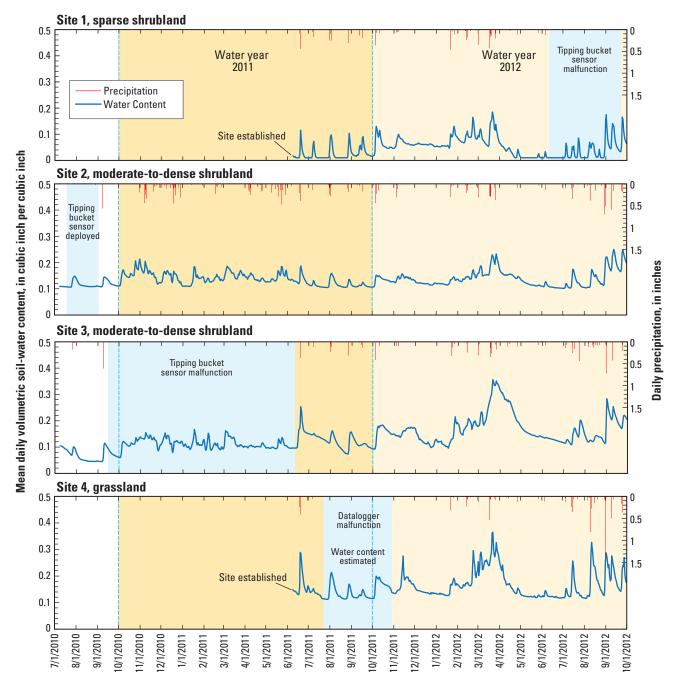
B

Site 1, sparse shrubland, July 19, 2012

Site 3, moderate-to-dense shrubland, September 10, 2012

Aerial photographs by C. Justin Mayers and David W. Smith using a camera mounted on a 40-foot tripod

Volumetric soil-water content ranged from about 0.05 to 0.36 in^{3}/in^{3} (fig. 12). Depth to groundwater measured in a collocated well (site 142; fig. 5; table 5) averaged 3.5 ft below land surface and ranged from about 2.5 to 4.1 ft (July 2010–September 2013; fig. 13).


Site 4 (fig. 2; table 1) was established at an altitude of about 6,013 ft on June 8, 2011. This site was composed of phreatophytic meadow grasses that covered 100 percent of the measurement area (figs. 11A, **B**; table 8). The area was heavily

grazed by cattle; therefore, grass height typically was within 0.5 ft of the land surface. The site was fenced in to protect sensors from grazing cattle; therefore, grass in the fenced area was periodically mowed to mimic grazed conditions beyond the fenced area. Volumetric soil-water content ranged from about 0.11 to 0.37 in³/in³ (fig. 12). Depth to groundwater measured in a collocated well (site 143; fig. 5; table 5) averaged 4.1 ft below land surface and ranged from about 3.2 to 5.1 ft (June 2011–September 2012; fig. 13). JA1114

Site 2, moderate-to-dense shrubland, July 18, 2012

Figure 11. Evapotranspiration sites, Kobeh Valley, central Nevada photographed *A*, laterally to show instrumentation and vegetation at sites 1–4, and, *B*, aerially from a location approximately 328 feet west of sites 1–3 to show vegetation distribution in an approximately 28-foot square footprint.— Continued

Figure 12. Continuously measured precipitation and near-surface (0.8–2.4-inches below land surface) volumetric soil-water content at evapotranspiration sites, October 2010 through September 2012, central Nevada.

Instrumentation

Each ET site was equipped with identical data recording and sensor arrays, with eddy-covariance instruments and net radiometers deployed on 10-ft steel tripods. Sites also were equipped with aboveground volumetric and tipping-bucket precipitation gauges and belowground energy-flux sensors. Observation wells were equipped with pressure transducers to provide continuous groundwater-level data. Most sensors were powered with a combination of 10- and 64-watt solar panels and multiple deep-cycle marine batteries. Turbulent fluxes were measured at high frequency (10 Hz) intervals using multiple sensors. Water-vapor measurements were obtained using a krypton hygrometer (KH2O, Campbell Scientific, Inc.), and wind-speed vectors and sonic temperature measurements were obtained with a three-dimensional (3-D) sonic anemometer (CSAT3, Campbell Scientific, Inc.). Absolute water-vapor density was measured with a temperature/ humidity probe (HMP45C, Campbell Scientific, Inc.). These high frequency data were recorded using an electronic data-logger (CR5000, Campbell Scientific, Inc.). The datalogger JA1115

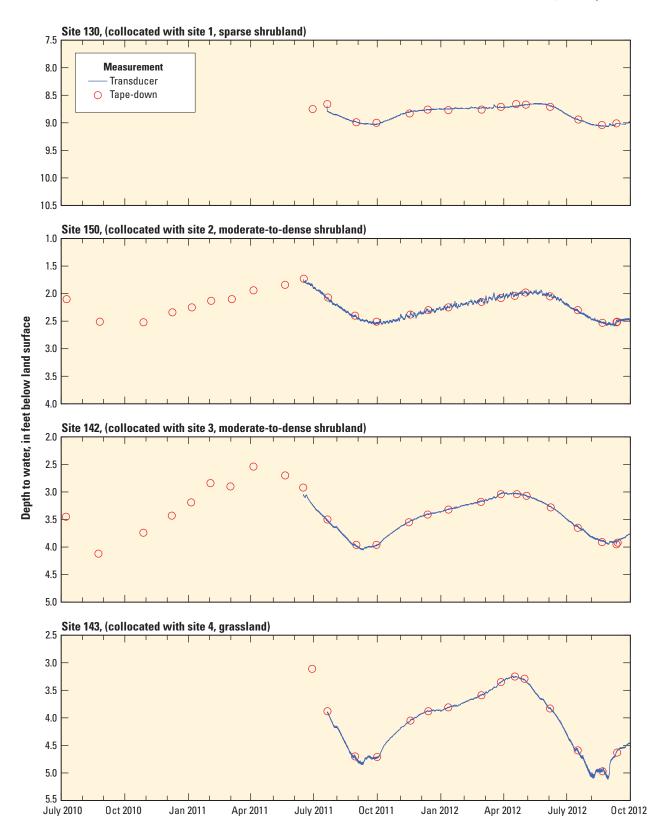


Figure 13. Wells collocated with evapotranspiration sites, Kobeh Valley, central Nevada; sites 130, 150, 142, and 143 were collocated with sites 1–4, respectively.

JA1116 SE ROA 803 received sensor readings 10 times per second and computed means, variances, and covariances every 30 minutes. The hygrometer and sonic anemometer were positioned about 4 in. apart, directed into the prevailing wind direction (west), and deployed at about 5 ft or more above the plant canopy (table 9).

Net radiation was measured with a net radiometer (NR Lite, Kipp and Zonen) deployed at about 8 ft or more above the plant canopy (table 9). Soil-heat flux was measured using the calorimetric method (Fuchs, 1987) and two heat-flux plates (HFP01, Hukseflux), eight averaging soil-temperature probes (TCAV, Campbell Scientific, Inc.), and a water-content reflectometer (CS616, Campbell Scientific, Inc.). Heat-flux plates were installed at 3.1-in depths, with replicate temperature probes placed above it at 0.8- and 2.4-in depths. The water-content reflectometer was installed horizontally, and it integrated measurements between two horizontal rods at 0.8and 2.4-in depths. Flux plate, temperature, and water-content sensor spatial locations were chosen so the mean degree of shading from vegetation approximated the degree of shading across each site. The change in soil temperature and soil-water content above heat-flux plates was converted to a heat flux and added to the heat-flux plate measurements (Fuchs, 1987) to compute soil-heat flux at the soil surface. Available energy was computed as net radiation minus soil-heat flux.

Precipitation was measured at each site with a National Weather Service approved standard 8-in diameter volumetric rain gauge (NovaLynx). A tipping-bucket rain gauge (TE525, Campbell Scientific, Inc.) was collocated with each volumetric rain gauge to record the timing and intensity of rainfall events. The precipitation accumulated in volumetric gauges was measured monthly. Volumetric rain gauges were drained seasonally, wiped dry, and refilled with a half-inch layer of mineral oil to prevent evaporative losses of the subsequently collected precipitation. During winter, the orifice funnel of the volumetric rain gauge was removed and 5 inches of antifreeze were added in combination with mineral oil (1 inch) to prevent freezing of accumulated water and to quickly melt collected snow. A wind monitor (05106, R M Young Company) also was collocated with and deployed at the same height as rain gauges. Wind-speed data were used to correct precipitation measurements for wind-related undercatch (Yang and others, 1996). Installation heights of all aboveground sensors are listed in table 9.

Instruments were checked and evaluated monthly and repaired or replaced as necessary. The horizontal level of net radiometers and sonic anemometers was checked and adjusted if necessary, and both the net radiometer and krypton hygrometer were cleaned with distilled water or isopropyl alcohol. Solar panels and precipitation gauge orifices were cleaned of dust and debris, and batteries were refilled with distilled water routinely.

Data Correction and Processing

Turbulent flux, available energy, and other site-specific data were processed to reduce errors, and data gaps were identified and filled in a manner similar to Moreo and others, 2007; Shoemaker and others, 2011; and Garcia and others, 2014. Gap-filling procedures varied with the variable and the length and timing of the gap. Volumetric water-content measurements taken with CS616 probes were calibrated using soil-moisture measurements collected from soil cores. Raw latent- and sensible-heat-flux data were corrected to compensate for limitations in eddy-covariance theory and equipment design (discussed in the "Turbulent Fluxes" section). Data were filtered to identify poor-quality data. Precipitation measurements were corrected for wind-related undercatch (Yang and others, 1996).

Turbulent Fluxes

High-frequency (10 Hz) latent- and sensible-heat fluxes were processed and corrected using LI-COR's EddyPro® software (www.licor.com/eddypro) and summarized in 30-minute fluxes. Spikes in the datasets representing more than six times the standard deviation for a given 30-minute averaging period were removed and replaced with the running mean. Coordinate rotation of the 3-D wind components was applied to account for imperfect leveling of the CSAT anemometer, such that its horizontal axis is perpendicular to the mean wind streamline. Frequency response errors resulting from flux losses or attenuation at high (fast) and low (slow) frequencies also were corrected (Moore, 1986; Massman, 2000). Additional corrections to the latent-heat flux included the Webb, Pearman, and Leuning (WPL)-correction (Webb and others, 1980) to account for variations in air density resulting from fluctuating temperature (thermal expansion) and humidity (vapor dilution) and the krypton hygrometer oxygen-sensitivity correction (Tanner and Greene, 1989).

Occasional spikes in turbulent-flux data from electronic and physical noise were censored. Water accumulation on the hygrometer from liquid and solid precipitation, and possibly dew and frost, accounted for a large portion of the physical noise. Data were considered poor and rejected when this was observed. Additional data filtering followed procedures described in Garcia and others (2014).

Table 9. Above-ground sensor heights, in feet, at four evapo-transpiration stations, Kobeh Valley, Nevada.

[3D, three-dimensional]

	Sensor									
Site number	CSAT3 3D sonic anemometer	KH2O krypton hygrometer	NR lite net radiometer	Tipping bucket rain gage	Volumetric rain gage					
1	6.6	6.6	9.2	2.6	2.6					
2	6.5	6.5	7.9	2.4	2.4					
3	7.1	7.1	9.2	3.9	3.9					
4	4.9	4.9	9.6	2.6	2.6					

Data gaps from discarded poor-quality data or sensor malfunction were filled using estimated values based on the time of day, seasonal variability, and gap length. Gaps of 2 hours or less were interpolated for all sensors between previous and subsequent measurements. Air-temperature (HMP45C) data gaps of more than 2 hours were filled using ordinary leastsquares regressions with sonic temperature output from the CSAT anemometer, where available, followed by regressions with air temperature measured at the nearest site using the HMP45C. Gaps in latent- and sensible-heat-flux data of more than 2 hours were filled using the following methods. Nighttime gaps (net radiation less than 5 watts per square meter, W/m^2) in the latent-heat flux were set equal to zero unless they followed or preceded a gap in daytime data. Daytime gaps and those lasting several days were filled using multivariate regression between turbulent fluxes and micrometeorological data (Garcia and others, 2014). The proportion of gap-filled latent-heat-flux data ranged from 8 percent at sites 1 and 3 to 21 percent at site 4. The proportion of gap-filled sensible-heatflux data ranged from 2 percent at sites 1 and 3 to 13 percent at site 4.

Available Energy

Net-radiation data measured with the NR Lite sensor were corrected for wind-speed sensitivity. These sensors are calibrated at zero wind speed; therefore, at any other wind speed, the sensor sensitivity decreases (Campbell Scientific, Inc., 2010). All available energy data were filtered during periods when sensors were cleaned and serviced and when datalogger programs were revised. Data gaps typically spanned 2 hours or less and were filled using linear interpolation. Gaps in net radiation and soil-heat flux lasting several hours to days were filled using ordinary least-squares regression with data from an alternate site (r^2 greater than 0.92). At ET site 4, the datalogger malfunctioned from late July through August 2011 and from early September through October 2011, causing complete loss of all data during these periods. Available energy data during September through October 2011 (9 percent of the available energy record) were gap filled using data from ET site 2 and the multivariate-regression technique (Garcia and others, 2014).

Near-surface water-content measurements collected with the CS616 probe were calibrated against volumetric water content measurements (cubic inch per cubic inch, or in³/in³) of soil samples periodically collected near the CS616 probes. Shallow burial of the CS616 instrument control box (1–2.7-in depths) resulted in thermal loading that was observed as diurnal fluctuations in water content. Therefore, similar to Garcia and others (2014), 30-minute measurements were averaged over 24-hour intervals (from midnight to midnight); the 24-hour average was assigned to the 12:00 PM 30-minute measurement interval; and these values were linearly interpolated from day to day to compute a continuous 30-minute dataset. Calibration equations were based on average daily measurements and had reasonable coefficients of determination, ranging from 0.76 at site 3 to 0.78 at site 1.

Energy-Balance Ratio

The fundamental criterion of the conservation of energy is that the energy balance is satisfied, and available energy is equal to the turbulent flux. This concept is commonly referred to as energy-balance closure. The energy imbalance in this study was evaluated over the period of record (water years 2011 and 2012) using the energy-balance ratio (equation 3) and the ordinary least-squares regression of the turbulent flux against available energy (table 10). The energy-balance ratio is the ratio of the turbulent flux to available energy:

$$EBR = \frac{\lambda E + H}{R_n - G} \tag{3}$$

The energy balance was evaluated using mean turbulent flux and available-energy components in equation (1) computed from 30-minute data over the period of record. Thirtyminute turbulent-flux data were corrected using respective energy-balance ratios (table 10). Daily-average turbulent-flux and available-energy measurements were used in regressions to avoid potential inaccuracies in soil-heat-flux estimates (Leuning and others, 2012). These regressions were forced through a y-intercept of zero. Analyses only included days during which 48 good 30-minute measurements were collected (that is, no data gaps) in order to remove potential day or night time bias (table 10).

Energy-balance ratios ranged from 0.87 at ET site 1 to 0.91 at ET sites 2 and 4 (table 10). Regression slopes comparing turbulent-flux and available-energy measurements were nearly equal to energy-balance ratios and largely explained the variability in the relation between turbulent flux and available energy (coefficients of determination ranged from 0.95 to 0.97).

In this study, measured turbulent fluxes were considered to be a probable minimum. A probable maximum was computed by dividing 30-minute measured and gap-filled turbulent fluxes by the energy-balance ratio for the respective water

Table 10. Energy-balance ratio (EBR), slope and coefficient of determination from ordinary least squares regressions comparing turbulent flux and available energy measurements, and percent good (non-gap filled) half-hour and daily data at four evapotranspiration sites, Kobeh Valley, Nevada.

[EBR: the energy-balance ratio or ratio of turbulent flux to available energy computed using average turbulent flux and available energy components. **Slope**; only includes data where 48 good measurements were made over a 24-hour interval in order to remove potential day- or night-time bias. **Daily "Good data"**: indicative of 48 good half-hour measurements during a 24-hour interval]

Site	Site EBR		Coefficient of	Good data (percent)		
number	EDR	Slope	determination, r ²	Daily	Half hour	
1	0.87	0.87	0.96	87	94	
2	0.91	0.90	0.95	65	88	
3	0.90	0.90	0.96	76	93	
4	0.91	0.90	0.97	46	74	
				JA	1118	

year to achieve full energy-balance closure. This approach maintains the eddy-covariance measured Bowen ratio, or ratio of sensible-to-latent heat flux (Bowen, 1926). The best (most probable) estimate of the latent-heat (evaporative) flux in this study is the mean of the probable minimum and probable maximum estimates. The most probable estimate (Moreo and Swancar, 2013) is referred to as energy-balance corrected ET (ET_c) for the remainder of this report.

Precipitation

Point measurements of precipitation can have deficiencies in catch as a result of wind (Larson and Peck, 1974; Yang and others, 1996; Nešpor and Sevruk, 1999). Using an unshielded precipitation gage similar to those used in this study, Yang and others (1996) determined that undercatch deficiency increases exponentially with wind speed and estimated a 14 percent deficiency at 10 miles per hour for liquid precipitation (rain) and a 65 percent deficiency for solid precipitation (snow). Precipitation measurements were corrected for wind-related undercatch using relations developed for rain, snow, and mixed precipitation by Yang and others (1996). Wind-speed measurements taken at the same height as precipitation collectors were used for corrections when sensors were deployed (sites 2 and 3 during water year 2011 and all sites during water year 2012). Prior to deploying a wind monitor at sites 2 and 3, wind speed at the height of the collector was estimated (1) by relating CSAT3 anemometer measurements to wind-monitor measurements, when available, using ordinary least-squares regression and (2) by adjusting CSAT3 anemometer measurements to the height of the precipitation collector. Coefficients of determination (r^2) describing regressions at sites 2 and 3 were strong (greater than 0.98).

Tipping-bucket precipitation measurements collected over a 30-minute interval were gap-filled and corrected to match monthly volumetric measurements prior to applying undercatch corrections. Volumetric-gauge corrections to tippingbucket measurements increased values by 35 percent at site 1, 14 percent at site 2, 15 percent at site 3, and 32 percent at site 4 over the period of record. Wind-related undercatch corrections increased volumetric-corrected tipping-bucket measurements by 19 percent at site 1, about 12 percent at site 2, 12 percent at site 3, and 18 percent at site 4 over the period of record (table 11). During periods when the tipping-bucket sensor malfunctioned and concurrent measurements of continuous precipitation and wind speed were unavailable, volumetricgauge data were increased for wind undercatch using the geometric mean of corrections taken when all sensors were functioning properly and for precipitation type (liquid, mixed, or snow). Uncertainty associated with using the geometric mean was evaluated using the standard deviation of these corrections and was incorporated into the uncertainty presented in table 12.

Discrepancies between volumetric gauge and tippingbucket measurements could reflect unrecorded precipitation by the tipping-bucket gauge during small events (where water accumulation in the bucket evaporated before tipping) or unrecorded snowfall by the tipping bucket. Larger discrepancies at sites 1 and 4 than at sites 2 and 3 likely reflected unrecorded snowfall due to wind-removal of the snow overtopping tipping-bucket gauges. Wind speeds at sites 1 and 4 were substantially greater than at sites 2 and 3 (table 11) because the precipitation collector orifices at sites 2 and 3 were positioned closer to the height of the vegetation canopy, where wind is greatly reduced, whereas the collector orifices at sites 1 and 4 were positioned well above the short canopy, minimizing the canopy effects on wind.

Snowfall measurement errors were assumed to minimally affect water-year precipitation measurements because volumetric gauge orifice funnels were removed during winter, and antifreeze was added to the gauges to minimize the amount of snowfall potentially overtopping the collectors. Wind-related undercatch corrections for snowfall, however, could bias estimates, because tipping buckets do not reliably measure snowfall. Snowfall typically accumulates in the tipping-bucket gage orifice while temperatures remain below freezing and is not measured by the tipping-bucket gauge until it is melted. Measurement of this precipitation at a later time and altered wind speed could bias undercatch corrections. Similarly, if snowfall exceeds a few inches before melting, it can overtop tipping-bucket gauges and not be measured, biasing measurements low.

Source-Area Measurements

Source areas for turbulent-flux and available-energy measurements vary according to instrument height and placement, the component being measured, wind speed and direction, and the vegetation canopy height and roughness characteristics. The source area for eddy-covariance turbulent-flux measurements (λE and H), often referred to as footprint, is the dynamic

Table 11.Annual mean wind speed measured at two heights,liquid fraction of total precipitation, and measured and correctedprecipitation at four evapotranspiration sites, Kobeh Valley,Nevada, 2011 and 2012.

[Sensor heights	are reported in	table 9. IR,	incomplete record]

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	Weter		Mean wind speed Liquid (miles per hour) fraction of		Precipitation (inches)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			anemometer	-	precipita-	Measured	Corrected	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2012	¹ 6.4	¹ 4.3	IR	5.7	6.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2011	4.1	2.4	0.50	11.1	12.3	
3 2012 4.4 3.0 0.58 5.9	Z	2012	4.9	3.0	0.55	7.1	8.0	
2012 4.4 3.0 0.58 5.9	2	2011	² 3.9	² 2.5	IR	9.6	10.7	
4 2012 5.6 5.2 0.50 6.8	3	2012	4.4	3.0	0.58	5.9	6.6	
- 2012 5.0 5.2 0.50 0.0	4	2012	5.6	5.2	0.50	6.8	8.0	

¹Values likely are biased because data were unavailable from early June through September 2012.

²Values likely are biased because data were unavailable from October 2010 through early June 2011. JA1119

Table 12. Measured annual precipitation, energy-balance evapotranspiration (ET_c), soil-water storage change, ground-water evapotranspiration (ET_{gw}) and associated uncertainties at four evapotranspiration (ET) sites, Kobeh Valley, central Nevada, 2011–12.

[Date range: dates over which groundwater ET was evaluated. Precipitation: measured precipitation corrected for wind related undercatch. Precipitation uncertainty: includes measurement uncertainty, additive RMS error when wind was not measured at the height of the precipitation collector (2011 data only), and uncertainty associated with using the geometric mean of the undercatch uncertainty when the tipping bucket was offline. ET_c : computed as the mean of annual measured ET and the maximum potential ET as detrmined by adjusting annual turbulent fluxes upward to achieve full energy balance closure. ET_c uncertainty: includes gapfilling and systematic uncertainty associated with energy balance closure. Soil-water storage change: applied over the upper 6 inches of soil, assuming that measured near-surface (0.8–2.4 inches below land surface) water content decreased linearly over the upper 6 inches of soil. ET_{gw} : (Groundwater ET computed as ET minus precipitation plus soil water storage change) divided by the number of years analyzed. ET_{gw} uncertainty: uncertainty represents the square root of the sum of squared precipitation uncertainty, ET_c uncertainty, and soil water storage measurement uncertainty (less than 0.001 feet). mm/dd/yyy, month/day/year]

Site number	Date range mm/dd/yyyy–mm/dd/yyyy	Precipitation (feet per year)	Precipitation uncertainty (feet per year)	ET _c (feet per year)	ET _c uncertainty (feet per year)	Soil-water storage change (feet per year)	ET _{gw} (feet per year)	ET _{gw} uncertainty (feet per year)
1	08/25/2011-08/24/2012	0.50	0.04	0.65	0.05	0.00	0.15	0.06
12	08/28/2010-08/27/2012	0.77	0.01	1.21	0.06	0.00	0.44	0.06
13	08/05/2010-08/04/2012	0.66	0.04	1.45	0.08	0.01	0.80	0.09
4	11/03/2011-11/02/2012	0.65	0.01	1.78	0.09	0.00	1.13	0.09

¹Values represent the average of 2 years.

upwind land-surface area contributing to measured water vapor and heat fluxes, whereas that for the available energy measurements (difference between Rn and G) is constant and depends mostly on the net-radiometer height. Turbulent-flux source areas were derived from a dispersion model (Scheupp and others, 1990) and assuming mildly unstable atmospheric conditions. Sensors were mounted at least 5 ft above the average plant canopy to capture the well-mixed and unstable surface layer. Model parameters were determined from vegetative canopy measurements collected during this study and those obtained from Stull (1988). Computed source areas indicated up to 90-percent of the turbulent flux originated from upwind distances of 550 ft at site 1, 440 ft at site 2 (fig. 14), 450 ft at site 3, and 450 ft at site 4. The relative flux contribution peaked within 30 ft upwind of the sensors and decreased asymptotically thereafter. Source areas for available-energy measurements were small relative to turbulent-flux measurements. The 99-percent net-radiometer source area for downward-facing sensors is a circular area with a radius of 10 times the instrument height (Campbell Scientific, Inc., 2010). Netradiometer source areas extended radially from nearly 80 ft at site 2 to about 100 ft at site 4, but measurements taken directly beneath or perpendicular to the sensors contributed the bulk of the total measured value. Source areas for ground-heat-flux measurements were very small, less than a 1-ft diameter circle around the sensor.

Site-Level Groundwater Evapotranspiration

Site-scale ET_{gw} was computed by subtracting the sum of annual precipitation and change in soil-water storage from total ET at each of the four ET sites. Total ET sources can include a combination of precipitation, groundwater, and surface water. Surface-water drainages in and local surface-water run-on were not observed in the ET measurement areas during the study period. Therefore, site-scale ET measurements were



Figure 14. Source-area contributions to turbulent fluxes with distance from site 2, Kobeh Valley, Nevada: *A*, cumulative and *B*, relative measured. JA1120

assumed to represent precipitation and groundwater sources only. Local precipitation at each site was assumed to be removed by ET.

Groundwater ET was estimated for periods when differences in shallow, volumetric soil-water content and storage were small to negligible. Water-content differences between the beginning and end of the water year averaged 0.05 in³/in³ for sites 1–4 and ranged from a minimum of 0 for site 2 in water year 2011 to a maximum of 0.1 in³/in³ for site 3 in water year 2012 (fig. 12). These differences indicated that a small amount of soil moisture from precipitation that fell during the previous water year was not completely removed by ET in the same water year. Late-summer precipitation during water year 2012 largely led to this difference. At sites 2 and 3, ET_{gw} was evaluated over a 2-year measurement period, whereas sites 1 and 4 were evaluated over a single year.

Wind-undercatch corrected precipitation measurements totaled 12.3 in. at site 2 and 10.7 in. at site 3 during water year 2011 (table 11). During water year 2012, corrected precipitation at the four sites ranged from 6.6 in. at site 3 to 8.0 in. at sites 2 and 4.

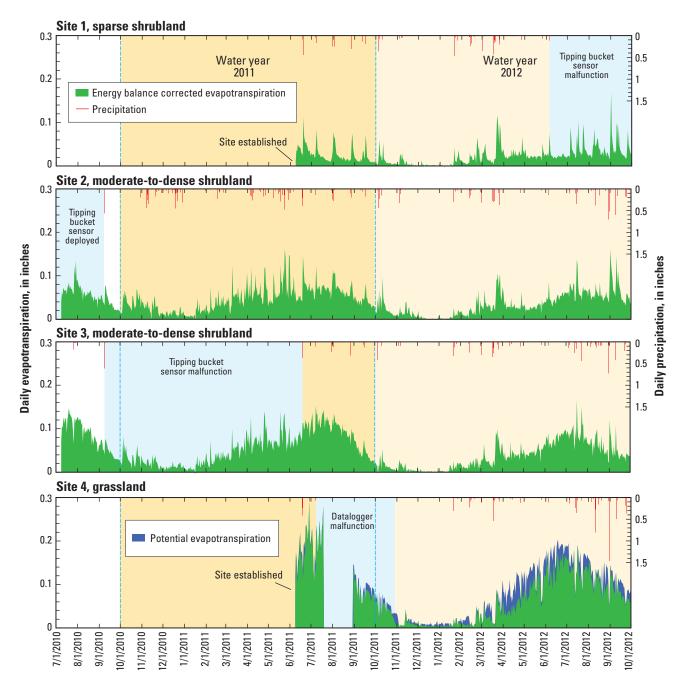
Daily ET_c totals generally followed a seasonal pattern, such that ET typically was greatest during the summer and least during the winter (fig. 15). Energy-balance corrections increased ET measurements by about 8 percent at site 1, 6 percent at site 3, and 5 percent at sites 2 and 4. At the moderateto-dense shrubland sites (sites 2 and 3), ET_c exhibited a minor peak in early spring in addition to the major peak in summer. Early-spring peaks were driven by increasing temperatures and predominantly reflect evaporation of soil moisture from cool-season precipitation. The summer peak, which corresponded with plant growth during the summer months at all ET sites, steadily increased until plants reached full growth during mid-summer and declined thereafter. Summertime ETc also corresponded with declining groundwater levels (fig. 13). At the sparse shrubland site, site 1, these seasonal patterns were muted because most ET resulted from evaporation of intermittent precipitation.

Potential evapotranspiration (PET) was computed for comparison with ET_c measurements from the grassland site (site 4; fig. 2; table 2). Potential ET was computed using the Priestley-Taylor model, with an alpha value of 1.26 (Priestley and Taylor, 1972), which assumes that all energy available for evaporation is accessible to the plant canopy (Shuttleworth, 1993). Daily ET_c rates measured at site 4 during summer 2011 (June–September) averaged about 8 percent less than PET rates, whereas ET_c rates during summer 2012 averaged about 16 percent less than potential rates (fig. 15). Differences in the ratio of actual to potential ET at site 4 between water years reflect a reduction in water availability, chiefly of water derived from precipitation; annual precipitation was less in water year 2012 than in 2011 (fig. 3; table 2).

Mean annual ET_{gw} estimates increased from 0.15 ft at site 1 to 1.13 ft at site 4 (table 12) consistent with increasing vegetation density. At the moderate-to-dense shrubland sites, taller shrub heights at site 3 than site 2 and the presence of bunch

grass at site 3 (table 8) corresponded to a greater ET_{gw} rate (0.80 ft at site 3 and 0.45 ft at site 2, table 12). These estimates corresponded with ET measurement-based values from previous studies at shrubland sites, but appeared low with respect to the grassland site. Previous estimates from sparse to dense phreatophytic shrubland areas at similar latitudes and altitudes in Nevada range from less than 0.08 to about 0.76 feet per year (ft/yr), whereas estimates from grassland areas range from about 1.6 to 2.6 ft/yr (Berger and others, 2001; Moreo and others, 2007). Errors associated with ET_{gw} estimates represent a combination of precipitation and ET_c correction errors (table 12).

Scaling Groundwater Evapotranspiration from Site to Basin Level


A variety of remote-sensing techniques have been used in groundwater discharge areas to scale point measurements to the basin level (Nichols, 2000; Berger and others, 2001; Moreo and others, 2007; Smith and others, 2007; Laczniak and others, 2008, Allander and others, 2009, Garcia and others, 2014). The amount and rate of water lost to the atmosphere by ET from groundwater discharge areas varies with vegetation type, cover, and structure; precipitation; depth to water; and soil characteristics (Laczniak and others, 1999, 2001, 2008; Nichols, 2000). Satellite imagery, in combination with field mapping, is often used to identify and group areas of similar vegetation and soil characteristics (Laczniak and others, 2001; Moreo and others, 2007; Smith and others, 2007; Garcia and others, 2014). Because ET generally increases with increasing vegetation density and soil moisture, these areal groupings are referred to as ET units because they are assumed to consist of areas with similar ET rates.

Site estimates of groundwater discharge in Kobeh Valley were combined with satellite imagery and PRISM data to scale groundwater discharge from the site to the basin level. Groundwater discharge in the DVFS was estimated by (1) identifying and delineating the GDA; (2) relating a vegetation index calculated from satellite imagery to ET_{gw} rates at sites 1–4 in Kobeh Valley and to precipitation-adjusted ET_{gw} rates (see the "Estimation of Pre-development Groundwater Evapotranspiration" section) at the sites for all other basins; (3) applying this relation to the spatially continuous vegetation index for vegetated areas in basin-specific GDAs; and (4) applying playa ET_{gw} estimates from a previous study to playas in this study. Long-term average annual PRISM precipitation varied among basins in the DVFS.

Satellite Imagery and Vegetation Indexes

Landsat satellite imagery was used to characterize vegetation cover in the GDA for this study. Landsat is a group of seven Earth-observing satellites, the first of which was launched in 1972, and the most recent in 2013. Each of the Landsat satellites was equipped with one or more sensor instruments designed to collect imagery in several distinct spectral bands in reflective visible and infrared, and emitted

> JA1121 SE ROA 808

Figure 15. Daily energy-balance corrected evapotranspiration (ET_c) and precipitation at four evapotranspiration (ET) sites and the computed potential ET at site 4, October 2010 through September 2012, Kobeh Valley, central Nevada.

thermal wavelengths (U.S. Geological Survey, 2012a). Imagery acquired by the Thematic Mapper (TM) instrument aboard Landsat 5 was used for this study. The TM instrument collects information in six spectral bands, with wavelengths ranging from the visible blue (0.45 micrometers, or μ m) to the shortwave infrared (2.35 μ m), and in an additional seventh band with thermal infrared wavelengths between 10.4 and 12.5 μ m. Continuous 112-mile-wide swaths of TM imagery are broken into overlapping "scenes" approximately 105 miles in length. Each scene is imaged by the sensor every 16 days at approximately 100-foot (30-meter) spatial resolution (394-feet, or 120-meters, for the thermal channel) and covers approximately 11,800 mi². Landsat 5 TM scene locations are identified using a world reference system 2 (WRS2) path and row number. The study area is in WRS2 path 41 rows 32 and 33.

Eight scene dates were selected for evaluation against vegetation conditions and measured ET at the four ET sites in Kobeh Valley. Two scenes for each date were required to JA1122 cover the study area (table 13). The selected scenes represented a subset of available images, where skies were cloudfree, vegetation canopies were green and active, and little to no antecedent precipitation was observed at nearby weather stations. All of the scenes were acquired by the Landsat 5 TM sensor during the summer months to represent "growingseason" conditions, when phreatophytes in the GDA are actively transpiring, shrubs have reached maximum growth, but the vigor of early summer annual plants is presumed to be at a minimum. Two scene dates from 2011 were collected to coincide with site-scale ET measurements in the study area. No Landsat scenes were available in 2012 as a result of the failure of the TM sensor aboard Landsat 5 during the late winter of 2012. Six additional scene dates were selected from 2007 through 2010 to provide a larger group of data for evaluation against the site-scale ET data. Each scene was atmospherically corrected by the U.S. Geological Survey Center for Earth Resources Observation and Science (EROS) data center using Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software. The LEDAPS software applies atmospheric corrections to Landsat data to generate a surfacereflectance product. The corrections are based on the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer model used by the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Science Team (U.S. Geological Survey, 2012b). The atmospherically corrected visible, near infrared, and short wave infrared bands for the two scenes for each scene date were mosaicked together to form a single 6-band image covering the study area for each scene date.

Information from multispectral satellite imagery, such as that collected by Landsat 5 TM, can be used to characterize vegetation on the basis of light absorption and reflection characteristics unique to vegetated surfaces. Healthy vegetation absorbs light for use in photosynthesis in the red wavelengths collected in TM band 3 ($0.63-0.69 \mu m$) and strongly reflects light in the near infrared wavelengths collected in TM band 4 ($0.76-0.90 \mu m$). Vegetation indices, such as the Normalized Difference Vegetation Index (NDVI; Rouse and others, 1974),

Table 13.Landsat 5 Thematic Mapper scenes evaluated for usein basin-scale estimation of groundwater evapotranspiration,Diamond Valley flow system, central Nevada.

[mm/dd/yyyy, month/day/year; WRS, World Reference System]

Image date	Landsat image entity identification						
mm/dd/yyyy	WRS path 41 row 32	WRS path 41 row 33					
06/30/2007	LT50410322007181PAC01	LT50410332007181PAC01					
04/02/2008	LT50410322008184PAC01	LT50410332008184PAC01					
04/05/2009	LT50410322009186PAC01	LT50410332009186PAC01					
07/22/2010	LT50410322010173PAC01	LT50410332010173PAC01					
07/24/2010	LT50410322010205EDC00	LT50410332010205EDC00					
08/25/2010	LT50410322010237PAC01	LT50410332010237PAC01					
06/25/2011	LT50410322011176PAC01	LT50410332011176PAC01					
07/12/2011	LT50410322011224PAC01	LT50410332011224PAC01					

the Modified Soil-Adjusted Vegetation Index (MSAVI; Qi and others, 1994), and the Enhanced Vegetation Index (EVI; Huete and others, 1999), use the contrast between these distinct absorption and reflectance features to help identify vegetated areas and to characterize the health and spatial extent of vegetation communities.

A vegetation index is a unitless single-band image with valid values ranging between -1 and 1. Index values in vegetated areas are nearly always greater than 0, and, in general, the healthier and denser the vegetation, the closer the vegetation index value is to 1. Different vegetation species at 100-percent cover can have different vegetation-index values due to differences in chlorophyll content, internal leaf structure, and canopy structure (Glenn and others, 2008). In combination, these variations can reduce the strength of relationships between the vegetation index and vegetation cover. Vegetation indices that are based on a simple combination of the near infrared and red wavelengths, such as the NDVI, are sensitive to the quantity of green-leaf vegetation in a scene, but also are influenced by the composite background reflectance of the soil surface, plant litter, and woody plant material, particularly in areas of moderate to sparse vegetation cover. The MSAVI and EVI are in a group of vegetation indices that use a canopy background-adjustment factor to reduce the influence of soil and background reflectance on the index and increase the signal from healthy vegetation in the image. The EVI includes an additional correction in the calculation to reduce the effect of atmospheric aerosols on the index.

Multiple vegetation indices were evaluated for their effectiveness at predicting ETgw, which was assumed to be directly proportional to phreatophytic shrub density. The EVI, MSAVI, and NDVI were calculated from the atmospherically corrected 2007–11 mosaicked summer Landsat 5 Thematic Mapper (TM) scenes (table 13). The area-weighted average vegetationindex values in the source area for each ET site was compared with the estimated groundwater discharge computed from each site (table 14) using ordinary least-squares regression. Area-weighted vegetation-index values for the ET site source areas were determined by computing the pixel mean of the 45-percent and 90-percent contributing areas at each site. The calculation was done by creating two circular buffers around the ET site in a GIS, so each buffer was mapped as a circular area comparable to the computed 45-percent and 90-percent contributing area. The overlap between the two buffers was removed from the 90-percent contributing-area buffer to avoid double accounting of those pixels when calculating the mean vegetation index for each area. Coefficients of determination (r^2) for all the vegetation indices evaluated were consistently greater than 0.6, with the exception of two NDVI images (table 14). The EVI regularly exhibited the best coefficients of determination for all images evaluated; therefore, the EVI was selected for the relation-based ET_{gw} estimation.

The best coefficients of determination for the EVI data were for the June 2007, August 2010, and August 2011 images. Precipitation records at the Combs Canyon, Coils Creek, and Smoky Valley Carvers weather stations (sites 5, 6,

> JA1123 SE ROA 810

and 9; fig. 2; table 2) show that water years 2007, 2008, and 2010 were the driest water years in the 5-year period. Dry years are desirable for evaluation of ET_{gw} from phreatophytes using satellite imagery because the remotely sensed signal from active xeric and annual plants and biological soil crusts should be minimized in years when water from precipitation is limited. Water year 2011 was wetter than the 30-year average annual at all stations where data were available. Although coefficients of determination values for the August 12, 2011, image were good, winter and spring of 2011 were wetter than normal, and early summer images showed pooled water on the Diamond and southern Monitor Valley playas; therefore, summer 2011 images were excluded from further analysis. The July and August 2010 images showed good correlation between measured ET_{gw} and EVI and were the most recent dry scenes available relative to the period of measurement; therefore, these two summer 2010 images were assumed to be adequate to extrapolate ET_{gw} across the basin and were selected for all subsequent calculations. The two 2010 scenes were averaged to create a single, summer-mean EVI image for 2010. The EVI images used in subsequent analyses were multiplied by 1000, and the values converted to integers. These data are referred to as "scaled EVI."

Groundwater Discharge Area

Groundwater discharge areas typically are characterized by a mix of phreatophytic and xerophytic shrubs, bare soil, and playa. The GDA boundaries represent the margin between xerophytic shrubs that occur outside the boundaries and a mix of xerophytic and phreatophytic shrubs that occur inside the boundaries. In this study, the GDA represents discrete areas in five of the six study area basins (fig. 16). Vegetated areas in the GDA are composed of phreatophytic shrubs with smaller areas of grassland, marshland, xerophytic vegetation, bare soil, and agricultural lands, where phreatophytic shrubs were present historically. The GDA was mapped using techniques similar to those used in studies throughout Nevada and eastern Utah (Nichols, 2000; Laczniak and others, 2001; Smith and others, 2007; Allander and others, 2009; Garcia and others, 2014). National Agriculture Imagery Program (NAIP) imagery from 2010, a digital elevation model (DEM), and water-level data were used in conjunction with field visits to map the GDA at approximately a 1:24,000-scale. During field visits, accessible roads were followed, and the point of transition from predominantly xerophytes to phreatophytes was marked on a digital map using a Global Positioning System (GPS) unit connected to a computer running GIS software. Photographs and notes were taken to document plant and soil conditions present at the marked location. Points, photographs, and notes also were used to document changes in plant communities

Table 14. Coefficients of determination describing relations between vegetation indices and site-scale groundwater evapotranspiration (ET_q), Kobeh Valley, Nevada.

[EVI, enhanced vegetation index; ft/yr, feet per year; mm/dd/yyyy, month/day/year; MSAVI, modified soil adjusted vegetation index; NDVI, normalized difference vegetation index]

		Mean scaled source area EVI ¹							
Site number	ETg (ft/yr)	06/30/07	07/02/08	07/05/09	06/22/10	07/24/10	08/25/10	06/25/11	08/12/11
1	0.15	86	102	108	117	97	95	115	85
2	0.45	114	111	126	113	121	114	124	122
3	0.8	138	150	143	127	163	150	126	155
4	1.13	236	253	371	302	294	228	381	291
	Coefficient of determination (r ²)	0.89	0.85	0.72	0.65	0.87	0.92	0.64	0.88
Site number	ETg (ft/yr)				Mean scaled sou	Irce area MSAVI ¹			
1	0.15	73	84	93	99	83	81	98	73
2	0.45	96	94	109	96	102	96	103	101
3	0.8	113	124	120	100	133	124	103	129
4	1.13	207	212	320	253	257	202	328	255
	Coefficient of determination (r ²)	0.85	0.85	0.71	0.62	0.84	0.88	0.62	0.86
Site number	ETg (ft/yr)				Mean scaled so	urce area NDVI ¹			
1	0.15	114	134	152	159	135	131	161	122
2	0.45	130	132	170	133	142	137	144	146
3	0.8	146	171	189	130	180	178	144	191
4	1.13	306	330	521	409	397	319	513	426
	Coefficient of determination (r ²)	0.75	0.76	0.69	0.52	0.75	0.80	0.57	0.79

¹Scaled EVI, MSAVI, and NDVI are the result of multiplying the calculated vegetation index by 1,000 and then rounding to the nearest integer.

58 Budgets and Chemical Characterization of Groundwater for the Diamond Valley Flow System, Central Nevada, 2011–12

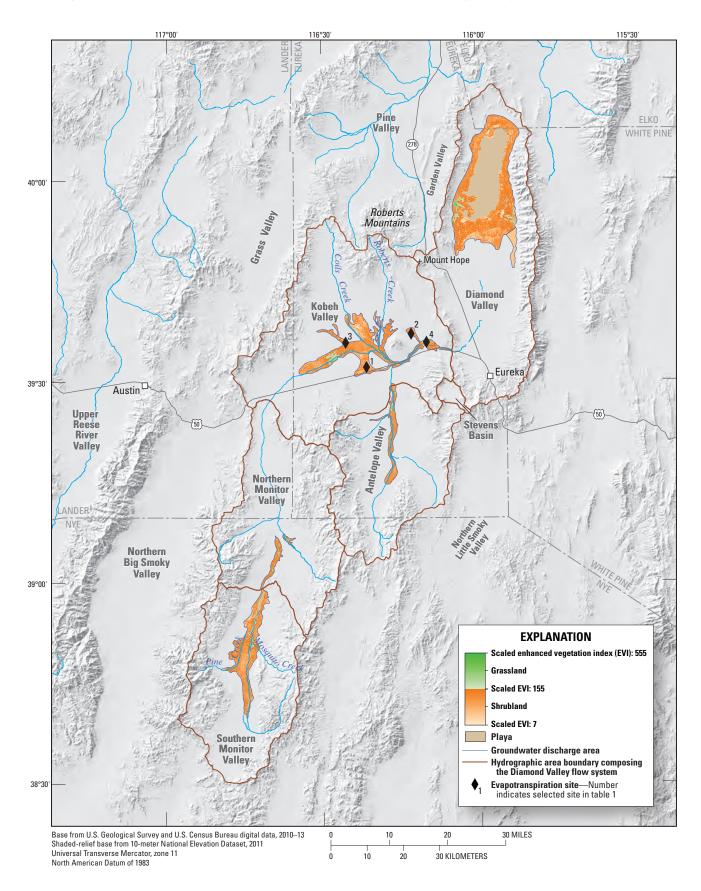


Figure 16. Groundwater discharge area, evapotranspiration units, and variation in the scaled summer-mean 2010 Enhanced Vegetation Index (EVI), Diamond Valley flow System, central Nevada. JA1125

inside the mapped GDA boundary. Each valley was visited and mapped in a similar manner, and the final GDA boundary in each valley was digitized into a GIS. The boundary was generalized and smoothed using ancillary datasets, including 2010 NAIP imagery and DEM data, in areas with limited physical access. The GDA boundary encompasses approximately 118,600 acres in Diamond Valley; 47,500 acres in Kobeh Valley; 10,300 acres in Antelope Valley; and 5,400 and 31,700, acres in northern and southern Monitor Valleys, respectively. Digital GIS data representing the GDA are described in appendix 1.

The GDAs and ET units were delineated by Harrill (1968) for Diamond Valley and by Rush and Everett (1964) for Kobeh, Antelope, and northern and southern Monitor Valleys (figs. 17*A*–*C*). The GDA delineations in Antelope and Monitor (north and south) Valleys compared well with the boundary mapped for this study (table 15; figs. 17*B*, *C*); the GDA delineation in Diamond and Kobeh valleys differed more

substantially from the boundary in this study. Some areal differences between the recent and historic boundaries are likely due to the scale of mapping and the more recent availability of high resolution aerial imagery, which aided mapping playa boundaries with greater precision in this study than previously.

This study mapped approximately 19,700 more acres of vegetated land and 7,200 fewer acres of playa in Diamond Valley. The GDA delineated for this study included an area of low-density phreatophytes on the southern border of the Diamond Valley GDA that was not included in Harrill's 1968 delineation (fig. 17*A*). Field observations during recent mapping (fig. 17*A*) showed low-density greasewood and rabbitbrush intermixed with sage south of the 1968 boundary. The sage predominated along small elevation rises throughout the area. Similar conditions existed in areas of Kobeh Valley not included in the Rush and Everett (1964) GDA delineation (fig. 17*B*). This study mapped approximately 19,100 more acres of vegetation than was mapped by Rush; including

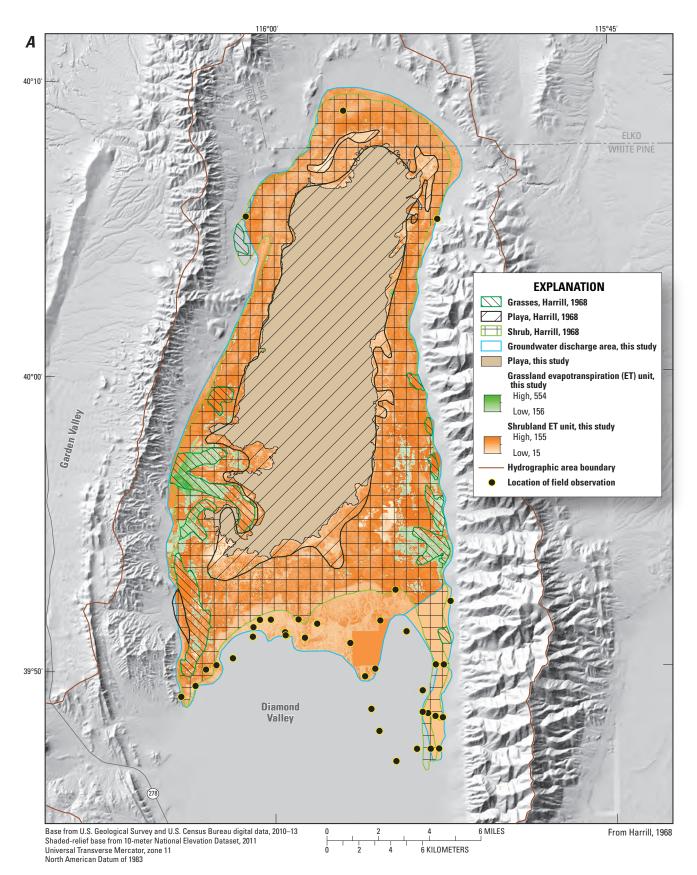
 Table 15.
 Groundwater discharge areas by vegetation type and groundwater-evapotranspiration (ET) rates from previous investigations and this study, Diamond Valley flow system, central Nevada.

 NA. net applicable.

		Previo	us estimates	Recent est	imates (2011–12)
Basin	ET unit	Area (acres)	Annual groundwater ET (acre-feet per acre) ¹	Area (acres)	Area-weighted mean annual groundwater E (acre-feet per acre)
	Shrubland	- ² 30.000	0.3 -	27,580	0.29
Southern Monitor Valley —	Grassland		0.5	2,752	0.89
Southern Monitor valley —	Playa	2,500	0.1	1,396	0.05
	Total	32,500	NA	31,728	NA
	Shrubland	5,100	0.2	4,017	0.37
Northern Monitor Valley	Grassland	800	1.25	1,340	0.98
_	Total	5,900	NA	5,357	NA
	Shrubland	11,000	0.2	9,869	0.40
Antelope Valley	Grassland	1,600	1.25	439	1.03
	Total	12,600	NA	10,308	NA
	Shrubland	³ 10,000	0.2	43,873	0.30
Kahah Vallari	Shrubland	412,000	0.4	43,875	0.50
Kobeh Valley —	Grassland	6,500	1.25	3,659	0.94
_	Total	28,500	NA	47,532	NA
	Shrubland	50,000	0.3	69,066	0.29
	Grassland	⁵ 4,650	1.2	6746	0.92
Diamond Valley	Grassland	⁶ 1,500	3	6,746	0.83
	Playa	50,000	0.1	42,766	0.05
	Total	106,150	NA	118,578	NA
All basins	Total	185,650	NA	213,503	NA

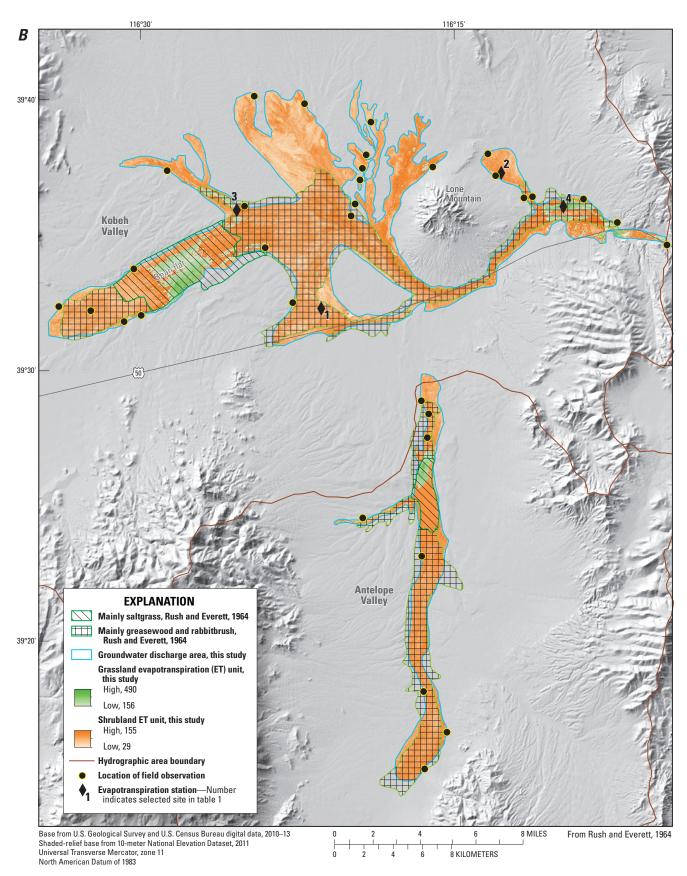
¹ Values in Southern Monitor Valley, Northern Monitor Valley, Antelope Valley and Kobeh Valley are from Rush and Everett (1964). Values in Diamond Valley are from Harrill (1968).

² Rush and Everett (1964) combines greasewood, rabbitbrush, and small areas of saltgrass, and meadow into one unit.


³ Rush and Everett (1964) splits greasewood and rabbitbrush into two units. This unit represents greasewood, and rabbitbrush.

⁴ Rush and Everett (1964) splits greasewood and rabbitbrush into two units. This unit represents greasewood, rabbitbrush, and saltgrass.

⁵ Harrill (1968) splits evapotranspiration in areas supported by spring discharge into two units. This unit represents meadowgrass, hay, and some saltgrass.


⁶ Harrill (1968) splits evapotranspiration in areas supported by spring discharge into two units. This unit represents wet meadow, marsh, and is normallly flooded; it includes some acreage of alfalfa.

JA1126 SE ROA 813

Figure 17. Previous groundwater discharge-area delineations compared with 2011 delineations, Diamond Valley flow system, central Nevada, for *A*, Diamond Valley; *B*, Kobeh and Antelope Valleys; and *C*, northern and southern Monitor Valleys.

JA1127 SE ROA 814

Figure 17. Maps showing previous groundwater discharge-area delineations compared with 2011 delineations, Diamond Valley flow system, central Nevada, for *A*, Diamond Valley; *B*, Kobeh and Antelope Valleys; and *C*, northern and southern Monitor Valleys.— Continued

JA1128

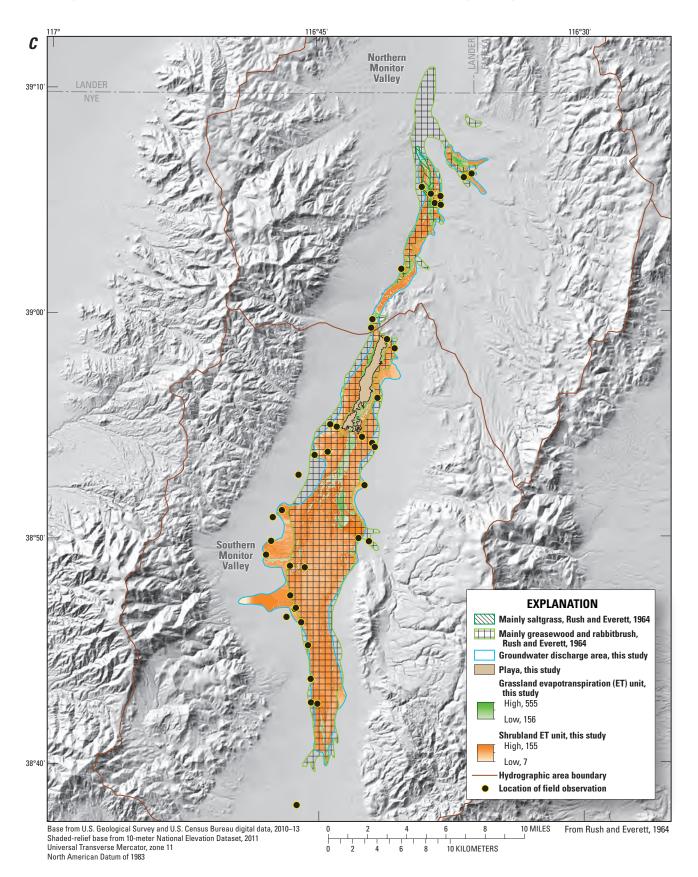


Figure 17. Maps showing previous groundwater-discharge-area delineations compared with 2011 delineations, Diamond Valley flow system, central Nevada, for *A*, Diamond Valley; *B*, Kobeh and Antelope Valleys; and *C*, northern and southern Monitor Valleys.— Continued JA1129

about 2,800 fewer acres of grassland and 21,900 more acres of shrubland than previously (table 15). The primary area of mapped grassland in the Rush delineation was around Bean Flat, although 12,000 acres of the total 22,000 acres of shrubland noted by Rush included "greasewood, rabbitbrush, and saltgrass." The greatest difference between the recent and previous delineation was northwest and northeast of Lone Mountain (fig. 17B). The area of GDA northeast of Lone Mountain not mapped by the earlier investigation included ET site 2 in a moderately dense greasewood and rabbitbrush community. The area of GDA northwest of Lone Mountain not mapped in the earlier study was composed of mixed greasewood and rabbitbrush interspersed with sage growing on slightly elevated ridges. The interior of the westernmost lobe of the mapped area was not accessible during field mapping, so it was delineated with less detail than the area nearer to Lone Mountain. Scaled EVI values and field observations in accessible areas indicated that the westernmost lobe was similar to the area in the more detailed delineation to the east. This investigation mapped about 2,300 fewer acres of phreatophytes than the delineation presented in Rush and Everett (1964) for Antelope Valley (fig. 17B). The areal difference comprised nearly equal areas of grassland and shrubland. Rush included an area influenced by a flowing well as grassland that was removed for the estimate of predevelopment-discharge presented in this report. Other differences can be attributed to scale and small differences in the boundary extents. This study mapped 540 fewer acres of vegetated area in northern Monitor Valley, where the GDA boundary for this investigation was mapped to the south of the boundary presented in Rush and Everett (1964; fig. 17C). The greatest boundary difference in southern Monitor valley was between the playa boundary mapped in 1964 and in the recent delineation. This study mapped 332 acres more total vegetated area (grassland and shrubland) in southern Monitor Valley than was mapped previously.

Characterization of the Pre-development Landscape

Water-resources management in Nevada typically relies on pre-development groundwater budgets that are representative of hydrologic conditions prior to substantial groundwater development. Estimation of pre-development groundwater discharge in the DVFS required that vegetated areas disturbed by recent or historic agriculture and other human activities in the GDA and EVI image be delineated and replaced with historic EVI values. Vegetation index values in disturbed areas were replaced with values from surrounding, undisturbed areas. This was done either by passing a sequence of averaging filters to move smoothed undisturbed data from the perimeter of the disturbed area to the interior or by replacing disturbed area pixels with the mean undisturbed shrubland or grassland value for a particular basin. Disturbed areas were delineated using a combination of NAIP and Landsat 5 TM imagery. Irrigated agriculture and meadows surrounding flowing wells were identified and delineated from Landsat scenes and 2010 NAIP imagery. Areas where natural springs had been diverted for agricultural use were evaluated in different ways. An irrigated,

center-pivot field at Bailey Spring (site 54; fig. 2; table 4) in Diamond Valley was delineated, and the mean grassland EVI value was applied to the area. Agricultural areas to the north and south of Shipley Hot Spring (site 56; fig. 2; table 4) were delineated, and the mean shrubland EVI value was applied to the disturbed area. Areas of healthy vegetation from spring or spring irrigation runoff west of Bailey and Shipley Hot Spring were not delineated because it was assumed that healthy, native vegetation would grow around natural spring-discharge areas. Areas in the southern Monitor Valley GDA, where Mosquito Creek and Pine Creek were diverted for irrigation, were delineated, and filtered, historic EVI values from the surrounding area replaced ones used previously. The Mosquito Creek disturbed area covered 483 acres, and the Pine Creek area covered 1,143 acres. In Antelope Valley, an area influenced by a flowing well was delineated, and the mean shrubland EVI value for Antelope Valley was applied to that area. Other areas in the GDA exhibiting anthropogenic disturbance, such as grazing, were delineated and EVI values were replaced with filtered values from neighboring, undisturbed areas.

Since the mid-1960s, numerous springs, mostly along the western margin of the playa in the northern part of Diamond Valley, have declined in flow or have stopped flowing entirely. Exact timing of the spring-flow decline is mostly unknown. Limited flow measurements at Taft-Thompson Spring (site 53; fig. 2; table 4), along the eastern margin, and Shipley Hot Spring (site 56; fig. 2; table 4), along the western margin, indicated notable flow declines from the mid-1980s to early 1990s. Spring-flow measurements collected in 1965–68 at five major springs (sites 53–57; fig. 2; table 4) in northern Diamond Valley ranged from 0.6 to 6.8 cfs. In 2011–12, only Shipley Hot Springs continued to flow, but at nearly half of the flow rate measured in 1990.

Active agriculture accounted for 7,034 acres of the total, and the residual 746 acres represented rectangular or oddly shaped disruptions in the natural vegetation visible in the NAIP imagery. All disturbances unrelated to active agriculture were in Diamond Valley and likely reflected abandoned agricultural lands, abandoned dwellings, or livestock enclosures. Of the recent disturbance, 2,854 acres were in Diamond Valley, 1,049 acres in Kobeh Valley, 1,305 acres in Antelope Valley, and the remaining 1,826 acres were in southern and northern Monitor valleys.

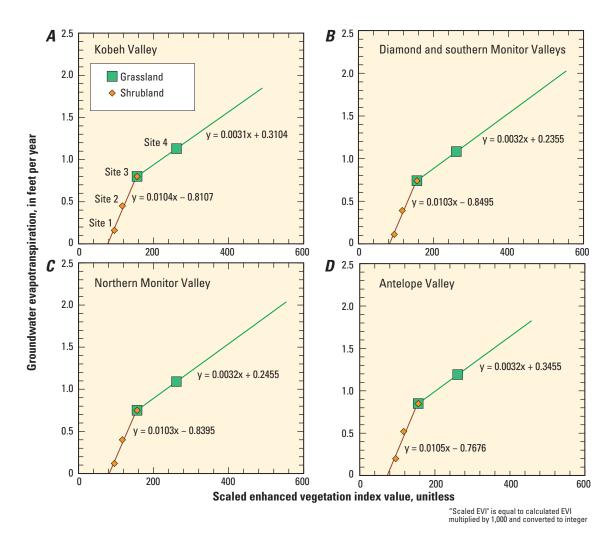
The southeastern lobe of the GDA in Diamond Valley exhibited elevated EVI, owing to cheat grass and other annuals; therefore, EVI values in this area were replaced. Comparisons between field observations and EVI values indicated that the very sparsely distributed shrubs did not reflect observed EVI values, which were greater than the mean value for the shrubland ET unit. Considering that vegetation in this area was very sparse and that neighboring vegetation was composed of xerophytes, approaches for EVI substitution used for other anthropogenically disturbed areas were unsuitable. In order to accurately characterize the very sparse density of the vegetation canopy and compute a representative ET_{gw} rate, EVI values in this area were replaced with the mean EVI of JA1130 very sparse areas in the Diamond Valley shrubland ET unit (89). Very sparse areas were delineated as pixels falling in the lower 25th percentile of the shrubland ET unit, or pixels with a scaled EVI value below 99.

Reductions in spring discharge and ET_{gw} due to groundwater withdrawals could not be evaluated with satellite imagery. Greater spring discharge prior to groundwater development likely supported larger areas of healthy vegetation. Landsat imagery used to characterize vegetation density in this study was available only from 1984 to 2011, whereas groundwater development and spring diversions began in the early 1960s. Although historic aerial photographs could provide estimates of the pre-development area supported by springs, comparable vegetation index values and ET_{gw} rates were unknown; therefore, changes in spring flow between pre-development measurements in the 1960s and measurements or observations from this study were accumulated and incorporated into predevelopment ET_{gw} estimates.

The spring-flow decline was determined by comparing a simple average of measurements taken in the mid-1960s with winter measurements taken from 2010–12. Negligible spring discharge decline between the mid-1960s and early 1990s indicated either that the springs were not yet affected by groundwater withdrawals or that spring discharge was composed of local precipitation and regional groundwater flow, such that a decline in spring discharge from groundwater withdrawals was equally compensated for by an increase in precipitation rates during the 1980s. Precipitation rates in the late 1960s were 19 percent (fig. 4) above the long-term mean, whereas rates in the early 1980s were 37 percent above long-term rates. During this study, precipitation rates were below the long-term mean; therefore, if springs are partially influenced by recent precipitation, then discharge rates measured during this study likely reflected a decline in precipitation in addition to declining water levels due to groundwater withdrawals.

Evapotranspiration Unit Delineation

The GDA was partitioned into three ET units on the basis of field observations, satellite imagery, and mean-scaled EVI values at each of the four ET stations in Kobeh Valley (fig. 16 and 18A): playa, shrubland, and grassland. The playa ET unit in northern Diamond and southern Monitor Valleys (fig. 16) covered 20 percent (about 44,200 acres, table 15) of the study area GDA. The playa ET-unit boundary represents the transition from vegetation to very sparsely vegetated or unvegetated playa and was delineated initially by digitizing the boundary in a GIS using multiple years of EVI data as a guide. The 2010 NAIP and DEM data were then used to evaluate and refine the initial boundary location. The Diamond Valley and southern Monitor Valley playa boundaries encompassed about 42,800 and 1,400 acres, respectively (fig. 19; table 16). Evaluation of summer and winter Landsat images from 2001 to 2011 and precipitation records indicated that the source of intermittent standing water on the playa surface in both valleys was predominantly runoff of direct precipitation


on the playa and precipitation-derived surface water run-on. Digital GIS data representing the ET units are described in appendix 1.

Shrubland and grassland ET units were defined between the playa and GDA boundaries in Diamond and southern Monitor Valleys and for the entire GDA in all other basins. The shrubland ET unit was defined as the 2010 summer mean-scaled EVI values greater than zero and less than or equal to the value in the contributing area of site 3 (153; fig. 18A). Scaled EVI values greater than 156 were classified as grassland. Scaled EVI values at site 3 were assumed to represent the upper extent of shrubland density and to define the transition between shrubland and grassland ET units. The mean-scaled EVI value at site 3 corresponded well with field observations of the shrubland-to-grassland transition zone for all the HAs evaluated. Vegetated areas, based on ET unit delineations, covered 79 percent (about 169,000 acres) of the GDA (fig. 16). The shrubland ET unit covered 91 percent (about 154,000 acres) of the vegetated areas, and the grassland ET unit, which was composed both of grass and marsh areas, covered 9 percent (about 14,900 acres) of the vegetated areas. The ET unit delineations were assessed using visual inspection of a combination of Landsat TM images, NAIP imagery, and field-reconnaissance notes and photographs. These delineations reflect general spatial changes on the landscape and were not intended to be exact delineations of plant communities or soil conditions.

Estimation of Pre-development Groundwater Evapotranspiration

Pre-development ET_{gw} was extrapolated across the flow system using relations between ET_{gw} rates from this study and the pre-development mean-scaled EVI in vegetated areas and between playa ET_{gw} rates from Garcia and others (2014) and ET unit acreages in playa areas. Groundwater ET from native, undisturbed vegetation was assumed to vary minimally from year to year; therefore, ET_{gw} estimates from undisturbed sites in Kobeh Valley were considered to be representative of regional long-term rates.

Relations developed between scaled EVI and site-scale ET_{gw} estimates were guided by water and energy limitations. The relation for the water-limited shrubland ET unit, where annual ET is mostly derived from precipitation, was assumed to follow a steep linear trend relative to the water- and energylimited grassland ET unit, where ET is mostly derived from shallow groundwater (Garcia and others, 2014). Two separate relations were developed for shrubland and grassland ET units using scaled EVI data from the 2010 summer-mean image. Shrubland areas were characterized by the ordinary least-squares regression between ETgw and EVI at shrubland sites (sites 1-3). Grassland areas were characterized by linear interpolation between ET_{gw} and EVI at sites 3 and 4 and extrapolating this line beyond site 4 (fig. 18). In Kobeh Valley, the relations were applied to spatially continuous pre-development distributions of scaled EVI to estimate ET_{gw} **JA1131**

Figure 18. Relations between 2011–12 groundwater evapotranspiration and the scaled Enhanced Vegetation Index (EVI) for shrubland and grassland evapotranspiration units for the summer-mean 2010 image, Kobeh Valley, central Nevada. In Kobeh Valley, groundwater evapotranspiration rates were estimated directly; in all other valleys, rates were adjusted for precipitation differences.

on a pixel-by-pixel basis. Groundwater ET from shrubland pixels that have EVI values less than those at site 1 (average-scaled EVI of 96) and from grassland pixels that have EVI values greater than those at site 4 (average-scaled EVI of 261) were extrapolated from the shrubland and grassland relations, respectively. The total area extrapolated beyond the shrubland and grassland relations totaled 31,000 and 1440 acres, respectively, or 15 and less than 1 percent of the total GDA for the DVFS, respectively.

Basin-scale ET_{gw} in Diamond, Monitor Valley (northern and southern part), and Antelope Valley was estimated using relations between precipitation-adjusted ET_{gw} rates at sites 1–4 in Kobeh Valley and EVI. Groundwater ET in a basin generally decreases as phreatophyte density decreases or as precipitation increases. For example, Moreo and others (2007) determined that annual ET_{gw} differed among three sites in three separate basins in eastern Nevada, where vegetation type and density were similar. Differences in annual ET_{gw} corresponded to differences in annual precipitation, where ET_{gw} decreased from site-to-site as precipitation increased. Long-term, average annual-precipitation rates varied among basins in the Diamond Valley flow system; therefore, ET_{gw} rates were assumed to vary with precipitation among basins for a given phreatophyte density. The 30-year (1981–2010) average annual PRISM precipitation rates in Diamond, northern Monitor, and southern Monitor Valleys were 8, 6, and 8 percent greater, respectively, than rates in Kobeh Valley, whereas the 30-year average annual-precipitation rate in Antelope Valley was 9 percent less than in Kobeh Valley (fig. 20).

Groundwater-ET rates were adjusted for each basin by increasing or decreasing precipitation totals reported in table 12 by the relative percentage differences in long-term PRISM precipitation and, then, recalculating ET_{gw} from scaled precipitation rates (see the "Site-Level Groundwater JATI32

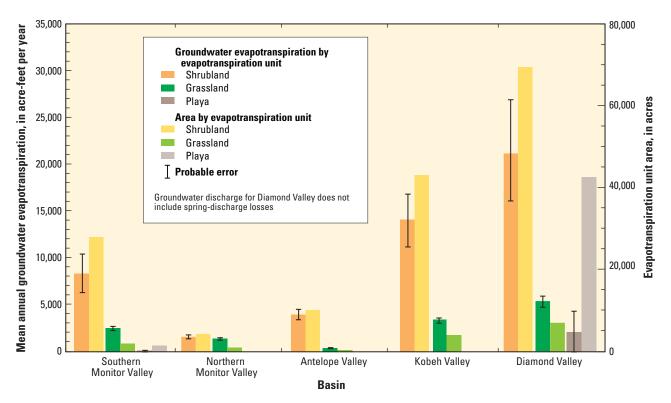
66 Budgets and Chemical Characterization of Groundwater for the Diamond Valley Flow System, Central Nevada, 2011–12

Table 16. Mean annual basin-scale groundwater evapotranspiration (ET) and ET unit area, Diamond Valley flow system, central Nevada.

[Mean-scaled enhanced vegetation index: is the result of multiplying the calculated vegetation index by 1,000 and then rounding to the nearest integer. This value represents the mean of pre-development pixels where areas identified as anthropogenically disturbed were replaced with values representing the native landscape. Mean Annual Ground-water Evapotranspiration: Values determined using relations shown in figure 18 and the summer mean enhanced vegetation index (EVI) scene shown in figure 16. Values over 1,000 acre-feet are rounded to the nearest 100 acre-feet. Probable uncertainty: Determined in Kobeh Valley for vegetated ET units as the sum of up-scaling and site-based estimation uncertainties. Upscaling uncertainty was determined as the standard deviation between estimates determined from July and August 2010 scenes, whereas site-based estimation uncertainty was estimated by adding and subtracting the groundwater ET uncertainty from site-scale groundwater ET rates (table 12) used to scale measurements to the basin level. In addition to uncertainty cacumulated for Kobeh Valley, maximum probable uncertainty in other basins incorporated an assumed 10 percent uncertainty for applying rates measured in Kobeh Valley. NA, not applicable]

Basin	ET unit	Area (acres)	Mean-scaled enhanced	Area-weighted mean annual groundwater	Mean annual groundwater evapotranspiration (acre-feet)					
			vegetation index	evapotranspiration (acre-feet per acre)	2010 summer value	Probable uncertainty				
	Shrubland	27,580	112	0.30	8,300	2,000				
Carefornia Manitan Mallan	Grassland	2,752	205	0.89	2,400	350				
Southern Monitor Valley	Playa	1,396	NA	0.05	70	100				
	Total	31,728	NA	NA	11,000	2,000				
	Shrubland	4,017	117	0.37	1,500	310				
Northern Monitor Valley	Grassland	1,340	242	1.02	1,400	210				
	Total	5,357	NA	NA	2,900	370				
	Shrubland	9,869	111	0.40	3,900	780				
Antelope Valley	Grassland	439	211	1.02	450	63				
	Total	10,308	NA	NA	4,400	780				
	Shrubland	43,873	109	0.32	14,000	2,700				
Kobeh Valley	Grassland	3,659	200	0.93	3,400	350				
	Total	47,532	NA	NA	17,000	2,700				
	Shrubland	69,066	² 112	0.30	21,000	6,000				
Diaman J.V.II.	Grassland	6,746	186	0.83	5,600	850				
Diamond Valley ¹	Playa	42,766	NA	0.05	2,100	2100				
	Total	118,578	NA	NA	29,000	6,400				
All Basins	Total	213,503	NA	NA	64,000	7,300				

¹Groundwater-evapotranspiration estimates do not compensate for a reduction in pre-development spring flow and pre-development evapotranspiration of that water by native vegetation.


²Mean value determined from the pre-development scene, where pixels with erroneously high values along southeastern lobe of the groundwater discharge area were replaced with values representing very sparse shrubland.

Evapotranspiration" section for ET_{gw} computation methodology). For example, in order to develop ET_{gw} -EVI relations in Diamond Valley, annual precipitation at sites 1–4 (table 12) was increased by 8 percent, and adjusted ET_{gw} was computed as annual ET_c minus adjusted precipitation and the change in soil-water storage. Basin-specific relations between precipitation-adjusted ET_{gw} rates at sites 1–4 and EVI (fig. 18) were applied to spatially continuous pre-development EVI values across vegetated ET units in each basin. Reasonable comparisons between measured and PRISM-estimated precipitation rates (30-year, 2011, 2012; table 2; see the "Climate" section) provided confidence in the use of PRISM data to adjust ET_{gw} .

Groundwater ET from the playa ET unit was computed by multiplying the ET unit area by playa ET_{gw} rates from Dixie Valley, NV (Garcia and others, 2014). Playa ET_{gw} rates in Dixie Valley were determined from continuous eddy-covariance ET and precipitation measurements collected over 2 years (October 2010–September 2011) at dry and moist playa sites (mean volumetric water contents of 30 and 45 percent, respectively; Garcia and others, 2014). In Diamond and southern Monitor Valleys, physical properties of the playa material and depth to water are largely unknown, but similar to the Dixie Valley playa, phreatophytes, springs, and seeps along the margin indicate that playa material likely is impermeable with respect to the basin-fill alluvial aquifer and restricts regional groundwater movement and discharge. Therefore, the average ET_{gw} rate determined for the Dixie Valley playa (0.05 ft/yr) was applied.

Groundwater Evapotranspiration Uncertainty

Uncertainty in basin-scale ET_{gw} estimates includes upscaling (from site-to-basin scale) uncertainty, site-based ET_{gw} estimate uncertainty, and uncertainty associated with applying ET_{gw} rates measured in other basins. Upscaling uncertainty was the standard deviation between estimates determined from July and August 2010 scenes. Site-based estimation uncertainty (or average annual groundwater ET uncertainty; table 12) included precipitation uncertainty, ET estimation uncertainty, and soil-water storage uncertainty. Precipitation JA1133

Figure 19. Mean annual basin-scale groundwater discharge from and total area of shrubland, grassland, and playa evapotranspiration (ET) units, Diamond Valley flow System, central Nevada.

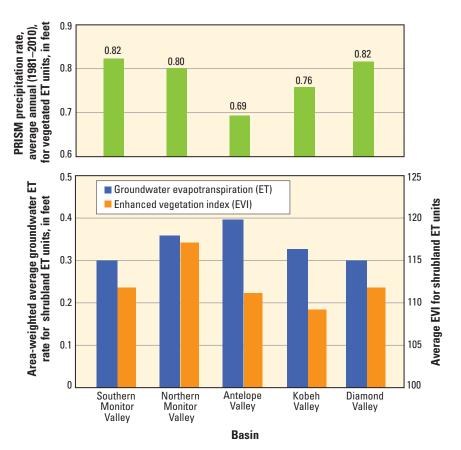
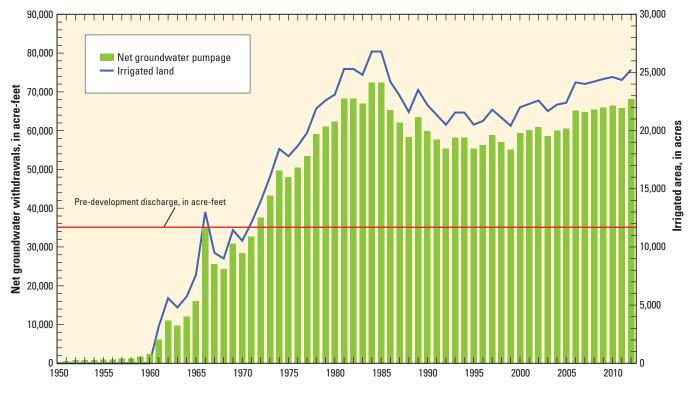


Figure 20. Basin-specific comparisons of average annual PRISM (Parameter-elevation Relationships on Independent Slopes Model) precipitation for 1981–2010 in vegetated ET units, area-weighted average groundwater evapotranspiration (ET) for shrubland ET units, and average scaled enhanced vegetation index (EVI) for shrubland ET units for the 2010 summer-mean image, Diamond Valley flow system, central Nevada. JA1134

uncertainty included measurement uncertainty, additional root mean squared error when wind was not measured at the height of the precipitation collector (2011 data only), and uncertainty associated with using the geometric mean of the undercatch uncertainty when the tipping bucket was offline. Evapotranspiration estimation uncertainty included gap-filling and systematic uncertainty associated with energy-balance closure. Site-based estimation uncertainty was applied by adding and subtracting the total uncertainty from site-scale groundwater ET rates (table 12) used to scale measurements to the basin level.

Uncertainty related to Kobeh Valley site measurements was applied to the entire DVFS and was not modified on the basis of precipitation-adjusted ET_{gw} rates. Evapotranspiration from phreatophyte areas in southern and northern Monitor, Antelope, and Diamond Valleys was generally assumed to be similar to measured values in Kobeh Valley on the basis of species combinations and growth patterns observed during field reconnaissance.

The proportion of ET attributed to groundwater often varies with differences in hydrologic conditions, including the precipitation amount, soil texture, aquifer properties, surface morphology, and discharge-area characteristics. For example, ET_{gw} estimates could be affected by surface-water contributions in Diamond Valley, elevated vegetation-index values in northern Monitor Valley due to soil background effects, or PRISM-based precipitation adjustments in Antelope Valley. In discharge areas where precipitation is relatively high and the surrounding drainage area is dominated by a steep mountain block, such as the Diamond Range along eastern Diamond Valley, surface-water inflow could be a sizeable component of the ET rate. In northern Monitor Valley, the mean vegetation index for the shrubland ET unit was the greatest of the five discharging basins (by an average of about 6 percent), whereas the surface albedo was the least (by an average of about 5 percent, data not shown). The elevated EVI in northern Monitor Valley could reflect dense phreatophytes or could be influenced by soil background effects from dark, pebble-covered soils unique in the study area to northern Monitor Valley. In Antelope Valley, the mean shrubland ET_{gw} rate was greater than all other DVFS basins and was attributed to a lower (9 percent) long-term average PRISM precipitation rate than was estimated for Kobeh Valley. Although long-term precipitation measurement sites on the valley floor of these two basins were not available, similar altitudes for basin GDAs and a decreasing precipitation trend from north to south (Harrill, 1968) supports a lower precipitation rate in Antelope Valley. The effects of these varying hydrologic conditions on ET_{gw} rates are unknown. Therefore, differences in ET_{gw} among basins were assumed to be primarily driven by estimated vegetation density and precipitation patterns, and the effects of other hydrologic conditions were not considered. A minimum uncertainty of 10 percent was added to ETgw estimates for southern and northern Monitor, Antelope, and Diamond Valleys to account for potential variations in basin-specific hydrologic conditions in Kobeh Valley and the effects of these conditions on ETgw rates.


Uncertainty related to extrapolation of ET_{gw} -EVI relations beyond the range in EVI characterized by sites 1–4 was small and well within the probable ET_{gw} uncertainty of more than 12 percent. Shrubland areas with EVI values less than those at site 1 totaled about 31,000 acres, or 15 percent of the total GDA, but ET_{gw} from these areas was only 5 percent of the total from the GDA. Similarly, grassland areas with EVI values greater than those at site 4 totaled 1440 acres, or less than 1 percent of the GDA, and ET_{gw} from these areas was about 3 percent of the total from the GDA. The maximum ET_{gw} estimated from the grassland relation was 2.04 ft/yr in northern Monitor Valley (fig. 16*C*). This value was slightly less than the net irrigation-water requirements for managed irrigated agriculture in this basin (2.3–4 ft/yr; Huntington and Allen, 2010).

Groundwater Withdrawals

Most groundwater withdrawals in the DVFS are used for irrigation of agricultural lands in Diamond Valley and Kobeh Valley. Crop inventories in Diamond Valley date back to 1950; the 1950–65 data were compiled by Harrill (1968), and the 1966–2012 data were compiled from NDWR records (fig. 21; Adam Sullivan, Nevada Division of Water Resources, written commun., March 3, 2014). Minor areas of likely irrigation in southern Monitor Valley and Antelope Valley were estimated by remote-sensing techniques (2005–11).

Most groundwater withdrawals in the DVFS were from the southern part of Diamond Valley and were used for growing alfalfa. Harrill (1968) assumed that net pumpage, or the volume of pumped groundwater consumed by ET following irrigation, was about 75 percent of gross pumpage. Residual groundwater, computed as the difference between gross and net pumping, either infiltrates the ground surface and recharges the shallow aquifer system or contributes to runoff (tail water) from irrigated areas that is later consumed by ET in down gradient areas. Since 1966, the NDWR has assumed gross pumpage was 3.0 acre-feet per acre (acre-ft/ acre) throughout the DVFS and that about 10 percent of the gross pumpage potentially returned to the groundwater system (Rick Felling, Nevada Division of Water Resources, written commun., July 24, 2014). This yielded a net groundwater withdrawal rate of 2.7 acre-ft/acre, which is similar to the net irrigation water requirement for alfalfa developed by Huntington and Allen (2010). In areas where the depth to groundwater is about 50 to 100 ft, much of the infiltrated water probably is retained in the unsaturated zone and does not reach the water table or takes several decades to reach the saturated zone or water table. In this study, net groundwater withdrawals were estimated as the product of the irrigated acreage and a net pumpage rate of 2.7 acre-ft/acre per year for 1966-2012 in Diamond Valley and for 2006–12 in Kobeh Valley.

Estimates of net groundwater withdrawals in southern Monitor and Antelope Valleys for 2005–11 also were calculated as the product of irrigated acreage and the 2.7 acre-ft/ acre net pumpage rate (Rick Felling, Nevada Division of Water Resources, written commun., July 24, 2014). Minor JA1135

Figure 21. Estimated net groundwater withdrawals from pumping, pre-development natural discharge, and irrigated-acreage for 1950–2012 in Diamond Valley, central Nevada.

irrigated areas in these valleys were estimated from summertime satellite imagery and remote-sensing techniques. Reasonable agreement between remotely sensed irrigated areas estimated in Kobeh Valley and Diamond Valley and those areas reported by NDWR provided verification of the remotesensing techniques applied in southern Monitor and Antelope Valleys.

Groundwater Recharge

Groundwater recharge from precipitation is the largest component of inflow to DVFS, and, between 1949 and 2011, it was estimated using several methods, including the Maxey-Eakin method (Eakin and others, 1951), the Basin Characterization Model (BCM; Flint and Flint, 2007; Heilweil and Brooks, 2011), and a water-balance relation (this study). The Maxey-Eakin method consists of an empirically derived relation between precipitation and recharge at the basin scale (Maxey and Eakin, 1949). Recharge percentages for selected precipitation zones were developed by balancing recharge and estimated natural groundwater discharge for individual basins. The recharge percentages were mathematically coupled to precipitation distributions developed by Hardman (1936) and Hardman and Mason (1949). The Maxey-Eakin method was designed to estimate basin-scale recharge, which both includes in-place recharge from precipitation and infiltration from streamflow; however, the method does not include subsurface inflow from adjacent basins.

The BCM recharge model (Flint and Flint, 2007) was developed to provide regional consistency among annual estimates of potential recharge from precipitation (in place) and runoff. The BCM is a distributed-parameter water-balance accounting model that uses a compilation of regionally scaled and spatially distributed input data to determine the components and processes necessary to solve the water-balance equation on a grid with a 270-meter cell size. Details on the approach to solve the water-balance equation are presented in Flint and Flint (2007) and Masbruch and others (2011). In general, the BCM identifies areas, on the basis of favorable climatic and geologic conditions, where precipitation potentially becomes in-place recharge or runoff. The BCM defines in-place recharge as the volume of precipitation available after runoff that percolates past root zones and becomes net infiltration. The BCM provides estimates of runoff and the areas where runoff originates, but does not determine the volume of runoff that becomes recharge.

Heilweil and Brooks (2011) used the BCM (Flint and Flint, 2007) to estimate groundwater recharge from precipitation in the DVFS. This study was part of a regional assessment of groundwater availability, driven by a national water census, in which a conceptual model and numerical steady-state model of the Great Basin Carbonate and Alluvial Aquifer System (GBCAAS) were constructed (Heilweil and Brooks, 2011; Brooks and others, 2014). The GBCAAS is an update of the earlier RASA study (Harrill and others, 1983, 1988; Prudic and others, 1995), and as in the RASA

no additional hydrologic data were collected. As an important element of the overall conceptual model, new groundwater budgets were developed that used recharge estimated from the BCM. Groundwater budgets based, in part, on the new recharge estimates were reported for 17 regional flow systems, including the DVFS (Masbruch and others, 2011). The GBCAAS assessment assumed that the fraction of runoff that became recharge ranged from 10 to 30 percent, depending on the amount of surface-water irrigation in a selected basin (Masbruch and others, 2011).

In the DVFS, recharge to the groundwater system from precipitation was minimally affected by groundwater development and was assumed to be relatively constant over time. Under steady-state conditions and limited groundwater development, inflow, derived from precipitation and subsurface inflow, equals outflow, derived from groundwater ET and subsurface outflow. For this study, recharge from precipitation is equivalent to the sum of ET_{gw} and net subsurface outflow (subsurface outflow less subsurface inflow).

Subsurface Flow

Water-level data indicated that net subsurface outflow or interbasin flow in the DVFS goes though the basin-fill aquifer from southern to northern Monitor Valley, from northern Monitor Valley to Kobeh Valley, from northern Antelope Valley to Kobeh Valley, and a minor amount of subsurface flow from Kobeh Valley to Diamond Valley beneath Devil's gate. Estimates of subsurface flow between basins that make up the DVFS were developed by previous investigators (Rush and Everett, 1964; Harrill, 1968) using Darcy's Law. Although these flow estimates were only for the basin-fill aquifer, additional subsurface flow could occur in underlying carbonate or volcanic rocks (Tumbusch and Plume, 2006). The hydrologic properties used to determine the quantity of flow were transmissivity, effective width of the flow section between the basins, and the hydraulic gradient across the flow section.

Subsurface flow through the basin-fill aquifer between hydrographic areas was re-evaluated in this study using previous transmissivity estimates, groundwater-flow sections derived from remotely sensed imagery, and hydraulic gradients determined from the 2012 water-level data. Transmissivity estimates from Rush and Everett (1964) and Harrill (1968) range from 6,700 square feet per day (ft^2/d) to 13,400 ft^2/d . The flow sections were revised using GIS analyses and recent water-level contours (plate 1). The revised flow cross section between southern and northern Monitor Valleys was 3.1 mi wide and was 3.4 mi wide between northern Monitor Valley and the western part of Kobeh Valley, whereas Rush and Everett (1964) estimated widths of 2 mi and 6 mi, respectively. Differences between previous and revised flow sections are likely due to use of more accurate maps, additional water-level data, and differences in flow-section locations for the revised flow sections. Water-level gradients from spring 2012 indicated the potential for groundwater flow from northern Antelope Valley to eastern Kobeh Valley, but the geologic structure and

depositional history most likely restricts flow through most of the cross section (Rush and Everett, 1964; Tumbusch and Plume 2006). The revised flow section between Kobeh and Diamond Valleys at Devil's Gate (about 100 ft) is similar to Harrill (1968).

Revised hydraulic gradient estimates differed from previous estimates. The revised hydraulic gradient between southern and northern Monitor Valleys was about 8 feet per mile (ft/mi) and was about 9 ft/mi between northern Monitor Valley and the western part of Kobeh Valley, whereas Rush and Everett (1964) estimated 20 ft/mi and 10 ft/mi, respectively. The revised hydraulic gradient between Kobeh Valley and Diamond Valley through Devil's Gate was about 30 ft/mi, whereas Harrill (1968) estimated about 10 ft/mi. Hydraulic gradient differences probably resulted from the use of more detailed water-level data in this study and continued groundwater declines in southern Diamond Valley.

Change in Groundwater Storage

Groundwater withdrawal alters the steady state, or predevelopment, flow system because the source of pumped water is either from an increase in inflow, a decrease in outflow, a decrease in groundwater storage, or some combination of these three. In the DVFS, the source of most pumped groundwater is storage, with lesser amounts from the capture of ETgw (which includes reduced spring discharge). This was inferred because, in Diamond Valley and the DVFS, groundwater was withdrawn primarily outside the GDA or along the sparse edge of the GDA, and the leading edge of the cone of depression in southern Diamond Valley was coincident with the southern extent of the GDA. The change in groundwater storage must be evaluated to adequately describe the groundwater budget under recent, post-development conditions in the DVFS. For this study, recent conditions were represented by the annual average water budget for 2011–12. The volume of groundwater removed from storage was estimated using two independent methods.

The first method assumed that the decrease in groundwater storage was equivalent to the estimate of net pumping less the decrease in ETgw, which was equivalent to the reduction in spring discharge. The second method, the water-level differencing approach, is based on changes in groundwater levels over time multiplied by the specific yield of the basinfill aquifers. Storage-change estimates using groundwater levels were made only in the southern part of Diamond Valley, because all other areas lacked sufficient historic waterlevel data and were assumed to be relatively steady. Storage changes were evaluated from 1950 to 2012 and from 2005 to 2012 using water-level contours from Harrill (1968), Tumbusch and Plume (2006), and those developed for this study (plate 1). Water-level contours from previous studies were digitized, and contours from the three separate studies were interpolated to create continuous water-level surfaces. The pre-development (1950) water-level surface in the southern part of Diamond Valley created from Harrill (1968) was **JA1137**

subtracted from the post-development spring 2012 surface and multiplied by the estimated distribution of specific yield (Harrill, 1968). The resultant product represented the volume of groundwater removed from storage between 1950 and spring 2012. The change in groundwater storage from 2005 (Tumbusch and Plume, 2006) to 2012 was computed using the same procedure.

Groundwater Budgets

Pre-development (before 1950) and recent (2011–12) groundwater budgets were developed for each hydrographic area in the DVFS. A pre-development groundwater budget is representative of hydrologic conditions prior to notable groundwater withdrawals and when the groundwater system was in a state of dynamic equilibrium (Theis, 1940). Under pre-development conditions, the volume of inflow equaled the volume of outflow, and change in groundwater storage was assumed to be negligible. Early development in the DVFS consisted of diversion of natural streamflow or springs for direct irrigation of meadow grass and alfalfa or for storage in small reservoirs for later irrigation use (Rush and Everett, 1964; Harrill, 1968). Minor groundwater withdrawals probably began in the 1940s. Large groundwater withdrawals, mainly in the southern part of Diamond Valley, began in the early 1960s and steadily increased to a maximum by the mid-1980s (fig. 21). For the purposes of this study, the pre-development groundwater budget represents annual groundwater conditions prior to 1950. The recent, or "post-development," groundwater budget reflects groundwater conditions as an average annual for 2011-12.

Measured and precipitation-adjusted ET_{gw} rates used to estimate basin-scale groundwater discharge were assumed representative of pre-development long-term rates in the study area. The site-based ET_{gw} rates used to scale values to the basin level were measured in undisturbed areas representative of pre-development, steady-state conditions. Average annual precipitation during the ETgw measurement period reflected long-term rates and groundwater-levels within groundwaterdischarge areas changed minimally from pre-development conditions to the study period, indicating that ET and ET_{gw} source water availability reflected long-term conditions. Although precipitation rates measured at ET sites in Kobeh Valley varied from 2011 to 2012, the average precipitation during 2011 and 2012 was generally similar to the long-term average for the area (fig. 3). Relative precipitation differences between basins, which were used to up-scale site-based ET_{gw} rates, were based on long-term average annual-precipitation rates from PRISM. Seasonal fluctuations in groundwater-level were similar during 2011 and 2012 (fig. 13), indicating that the removal of groundwater by ET was similar each year.

The EVI image used to up-scale site-based estimates was modified to reflect pre-development conditions by identifying anthropogenically disturbed areas in the GDA and replacing EVI values in these areas with those from adjacent undisturbed areas. Changes in spring-discharge rates and vegetation cover (with the exception of Diamond Valley) were assumed to be minimal outside of these disturbed areas. In Diamond Valley, spring diversions pre-dating the 1960s and the decline in spring flow that began in the early 1990s likely affected areas beyond those delineated. The effect of declining spring flow on vegetation and estimated pre-development ET_{gw} was compensated for by adding the change in annual spring discharge to EVI-based groundwater ET_{gw} estimates.

Pre-development

Total pre-development groundwater outflow ranged from 200 acre-ft/yr for Stevens Basin to 35,000 acre-ft/yr for Diamond Valley (table 17). Pre-development ET_{gw} estimates ranged from 0 acre-ft/yr in Stevens Basin to 29,000 acre-ft/yr in Diamond Valley (table 17). Total pre-development outflow estimated for Diamond Valley comprised 29,000 acre-ft/yr of ET_{gw}, based on the distribution and density of post-development phreatophytes, and 6,000 acre-ft/yr of ET_{gw}, based on observed spring-flow loss since the mid-1960s. Estimated ETgw from shrubland ET unit accounted for about 70 percent or more of the total ETgw in each basin, except for northern Monitor Valley, where shrubland ET_{gw} accounted for about 52 percent, and grassland ET_{gw} accounted for the remainder (table 16). Playa occupied nearly 35 percent of the GDA in Diamond Valley and about 4 percent of the GDA in southern Monitor Valley, but ET_{gw} from the playa accounted for only about 7 percent and less than 1 percent of total ET_{gw} from these basins, respectively.

Groundwater ET estimates for the hydrographic areas were generally greater than the upper range of previous estimates, but were of similar magnitude to them (table 17; Eakin, 1962; Rush and Everett, 1964; Harrill, 1968; Heilweil and Brooks, 2011). The estimated mean-annual ET_{gw} in the DVFS under pre-development conditions was about 70,000 acre-ft. No ETgw was estimated for Stevens Basin, owing to the great depth to groundwater (greater than 450 ft). Differences in basin-scale ET_{gw} were attributable to differences in the ET unit areas and the ET_{gw} rates applied. The mapped GDAs in Antelope and northern and southern Monitor Valleys were comparable to previous studies; however, in Diamond and Kobeh Valleys, delineated GDAs were 1.1 and 1.8 times larger, respectively, than were mapped in previous studies (table 15). Area differences could be due to the use of aerial and satellite imagery and GPS mapping techniques for determination of the GDA. Earlier mapping might have excluded some areas of lower density phreatophytes included in the recent boundary to avoid overestimating discharge when using a single mean rate in the GDA.

Area-weighted mean ET_{gw} rates in acre-ft/acre for shrubland (0.30–0.40 acre-ft/acre across all basins) were similar to previous studies (0.2–0.4 acre-ft/acre), whereas the areaweighted rates for grassland (0.83–1.02 acre-ft/acre across all basins) were generally less than those from previous studies (1.2–3 acre-ft/acre; Eakin, 1962; Rush and Everett, 1964;

JA1138

 Table 17.
 Estimated outflow components of the annual groundwater budget, in acre-feet, for pre-development and recent conditions (average annual 2011–12), Diamond Valley flow system, central Nevada.

[All values rounded to two significant figures. <, less than; ---, no data]

Hydrographic area		ndwater dischar vapotranspiratio		Subsurfac	e outflow to adja	cent areas	Net groundwater withdrawals	Total outflow			
	Previous estimates ¹	Pre- development	Recent (2011–12) ²	Previous estimates ³	Pre- development	Recent (2011–12)	Annual average (2011–12) ⁴	Pre- development ⁵	Recent (2011–12) ⁶		
Southern Monitor Valley	9,200	11,000	11,000	2,000	1,400	1,400	550	12,000	13,000		
Northern Monitor Valley	2,000	2,900	2,900	6,000	3,400	3,400	0	6,300	6,300		
Antelope Valley	4,200	4,400	4,400	Trace	<800	<800	420	5,200	5,600		
Kobeh Valley	15,000	17,000	17,000	150	130	130	600	17,000	18,000		
Stevens Basin	0	0	0	200	200	200	0	200	200		
Diamond Valley	30,0007	35,000 ⁸	29,000	0	0	0	67,000	35,000	96,000		
Diamond Valley flow system	—	70,000	64,000	—	0	0	69,000	70,000	133,000		

¹Rush and Everett (1964) for Southern and Northern Monitor Valleys, Antelope Valley, Kobeh Valley, and Stevens Basin, Harrill (1968) Diamond Valley. Heilweil and Brooks (2011) discharge values represent an average of previous estimates and are not included.

²Represents long-term average annual groundwater ET, excluding irrigated lands.

³Rush and Everett (1964) and Harrill (1968).

⁴Estimated from the product of annual average irrigated acreage and net irrigation water requirement (2.7 acre-feet/acre; Rick Felling, NDWR, July 24, 2014). Annual average irrigated acreage for Diamond Valley and Kobeh Valley (2011–12) obtained from Nevada Division of Water Resources (NDWR) (http://water.nv.gov/mapping/inventories/cropinv.cfm, accessed March 3, 2014). Southern Monitor Valley and Antelope Valley annual average acreage (2010) estimated from summer-time satellite imagery and remote-sensing techniques.

⁵Pre-development total outflow was calculated as the sum of pre-developmet groundwater discharge by evapotranspiration and pre-development subsurface outflow to adjacent areas.

⁶Annual average (2011–12) total outflow was calculated as the sum of average annual (2011–12) groundwater discharge by evapotranspiration, average annual (2011–12) subsurface outflow to adjacent areas, and average annual (2011–12) net groundwater withdrawals.

⁷Eakin (1962) estimated discharge in Diamond Valley for the native vegetation, meadow, and pasture grasses, and excluded a playa discharge estimate.

⁸Estimate includes 29,000 acre-feet per year groundwater evapotranspiration (ETg) and 6,000 acre-feet per year representing observed spring-flow declines since pre-development time.

Harrill, 1968; table 15). Lower estimates of ET_{gw} in grassland areas were likely attributable to its measured rates at site 4, which were slightly less than grassland ET_{gw} rates from other recent studies in northeastern Nevada (see the "Site-Level Groundwater Evapotranspiration" section). Although area-weighted mean ET_{gw} rates were comparable among shrubland ET units overall, estimated ET_{gw} rates in this study for Antelope and northern Monitor Valleys (0.40 and 0.37 ft/ yr, respectively) were the highest among the five discharging basins, whereas rates applied in Rush and Everett (1964; 0.2 ft/yr) for these two basins were the lowest of the reconnaissance estimates among the five basins. These differences could be attributable to the low ET_{gw} rates applied in the reconnaissance studies (and determined in distant basins) and to uncertainties in the recent ET_{gw} estimates (table 16; see the "Groundwater Evapotranspiration Uncertainty" section).

The estimated mean-annual subsurface outflow to adjacent basins, where estimated, ranged from 0 acre-ft from Diamond Valley to 3,400 acre-ft from northern Monitor Valley to the western part of Kobeh Valley (table 17). Revised estimates of subsurface outflow for southern and northern Monitor Valley were 30 and 43 percent less, respectively, than previous estimates (600 and 2,600 acre-ft, respectively) as a result of the lower gradient estimated between southern and northern Monitor Valley and the shorter flow section delineated between northern Monitor and Kobeh Valleys in this study. A maximum mean-annual subsurface flow estimate of 800 acre-ft from Antelope to Kobeh Valley was determined on the basis of surface geology and recent groundwater data. Additional field mapping and aquifer testing is required to make a better estimate of subsurface outflow from Antelope Valley. No re-evaluation of subsurface outflow from Stevens Basin was made. The value of 200 acre-ft reported by Rush and Everett (1964) was used in the calculation for total outflow in this study. The hydrographic area receiving this outflow is unknown.

Groundwater recharge from precipitation was the greatest inflow component and was assumed to be minimally affected by groundwater withdrawals (table 18). For this study, estimates of recharge from precipitation were based on a waterbalance relation where recharge from precipitation is equivalent to the sum of ET_{gw} and net subsurface outflow (subsurface outflow minus subsurface inflow). Excluding Diamond Valley, recharge estimates from the water-balance method in this study were within 20 percent of Maxey-Eakin method recharge estimates. Values for southern and northern Monitor Valleys were less than Maxey-Eakin method estimates, whereas values for Antelope and Kobeh Valleys were greater (table 18; Eakin, 1962; Rush and Everett, 1964; Harrill, 1968). Recharge estimates from the BCM (Flint and others, 2004; Heilweil and Brooks, 2011) were generally greater than Maxey-Eakin estimates for all basins. In this study, there was insufficient data to differentiate groundwater recharge from subsurface inflow in Diamond Valley and Diamond Valley

JA1139

Table 18. Estimated inflow components for annual groundwater budget, in acre-feet, representing pre-development and recent conditions (average annual 2011-12), Diamond Valley flow system, central Nevada.

	Groundwate	er recharge from precip	oitation	Subsurface inflov	Subsurface inflow from adjacent areas						
Hydrographic area	Maxey-Eakin Method ¹	BCM ²	Pre-development and recent (2011–12) ³	Previous estimates ¹	Pre-development and recent (2011–12)	Pre-development and recent (2011–12) ⁴					
Southern Monitor Valley	15,000	16,000–27,000	12,000	0	0	12,000					
Northern Monitor Valley	6,300	10,000–34,000	4,900	2,000	1,400	6,300					
Antelope Valley	4,100	5,000-5,900	5,200	Trace	0	5,200					
Kobeh Valley	11,000	8,400-19,000	13,000	6,000	4,200	17,000					
Stevens Basin	200	1,400	200	0	0	200					
Diamond Valley	16,000-21,000	15,000-23,000	5	69,200	5	35,000					
Diamond Valley flow system	—	—	5	—	5	70,000					

[All values rounded to two significant figures. BCM, Basin Characterization Model; ---, no data]

¹ Rush and Everett (1964) for Southern and Northern Monitor Valleys, Kobeh Valley, Antelope Valley, and Stevens Basin; Eakin (1962) for Diamond Valley; Harrill (1968) for Diamond Valley.

²Flint and others (2004), Heilweil and Brooks (2010).

³ Based on the sum of groundwater evapotranspiration (ET) and net subsurface flow and assumes hydrologic flow system is in dynamic equilibrium (inflow equals outflow). No groundwater ET takes place in Stevens Basin, the Maxey-Eakin estimate for groundwater recharge of Rush and Everett (1964) was used.

⁴ Pre-development/average annual total inflow was calculated as the sum of pre-development/average annual groundwater recharge from precipitation and pre-development/average annual subsurface inflow from adjacent areas.

⁵ Insufficient data to differentiate groundwater recharge from subsurface inflow.

⁶ Includes 150 acre-feet inflow from eastern Kobeh Valley to southern Diamond Valley through Devil's gate (current estimate is 130 acre-feet) and

9,000 acre-feet from Garden Valley (Harrill, 1968). Subsurface flow from Garden Valley was not re-evaluated or included in current study.

recharge estimates, based on the water-balance method, were greater than the upper range of Maxey-Eakin and BCM estimates (by 19 and 9 percent, respectively). Groundwater recharge in Stevens Basin was not estimated in this study, therefore the Maxey-Eakin method based estimate of 200 acreft/yr from Rush and Everett (1964) was used (table 18). Total groundwater inflow from precipitation and subsurface inflow from adjacent basins in the DVFS is about 70,000 acre-ft/yr.

The estimated mean-annual subsurface inflow from adjacent basins ranged from 0 acre-ft/yr in southern Monitor Valley, Antelope Valley, and Stevens Basin to 1,400 acre-ft/yr in northern Monitor Valley and 4,200 acre-ft/yr in Kobeh Valley (table 18). Harrill's (1968) estimate of subsurface inflow to Diamond Valley was about 9,200 acre-ft/yr, of which 9,000 acre-ft/yr was assumed to originate from Garden Valley. This estimate was based on an imbalance in the estimated water budget for Garden Valley, where recharge from precipitation was about 9,000 acre-ft/yr greater than estimated discharge (Harrill, 1968). The potential for subsurface flow from Garden Valley was not re-evaluated during this study; consequently, there were insufficient data to differentiate between groundwater recharge and subsurface inflow to Diamond Valley.

Recent (2011–12)

The 2011–12 groundwater budget for each hydrographic area incorporated estimates of ET_{gw}, recharge from precipitation, interbasin flow, spring-flow losses, and net groundwater withdrawals. Outflow estimates were greater than inflow for most areas, and the differences were generally accounted for by a decrease in groundwater-storage (table 19) due to groundwater withdrawal. Imbalances computed for all areas, except

Diamond Valley, were within 10 percent of inflow and outflow estimates.

Diamond Valley had the greatest imbalance between groundwater inflow and outflow, about 61,000 acre-ft (table 19), because of groundwater withdrawals for irrigation in the southern part of the valley and the loss of an estimated 6,000 acre-ft/yr of spring flow along the margins of the playa in the northern part of the valley. Estimated annual net groundwater withdrawal was about 65,000 acre-ft in the southern part and about 1,900 acre-ft in the northern part of Diamond Valley. Water levels have shown large declines throughout a large portion of the southern part of Diamond Valley as groundwater has been removed from storage in the basin-fill aquifer (plate 1).

Using the water-level differencing approach, the average annual volume of groundwater removed from storage during the period 2005 to 2011 was estimated to be about 20,000-33,000 acre-ft in the southern part of Diamond Valley or about 33 to 54 percent of the calculated imbalance between inflow and outflow. Total storage loss based on water-level declines during the 7 water years was on the order of 140,000-231,000 acre-ft compared to about 412,000 acre-ft of storage loss estimated from net groundwater withdrawals and reduction in ET_{gw} during the same period. Storage-loss estimates based on net groundwater withdrawals were used in the budget calculations because the water-level differencing approach only was applicable in Diamond Valley, and the specific yield distribution of basin-fill deposits in Diamond Valley was uncertain. The average annual (2011-12) decrease in storage in Diamond Valley was about 61,000 acre-ft/yr (table 19) based on net groundwater withdrawals and the reduction in ET_{gw}.

JA1140

Table 19.Average annual groundwater budget, in acre-feet, representing current (2011–12)conditions, Diamond Valley flow system, central Nevada.

[All values rounded to two significant figures. Inflow values are from the Total inflow column in table 18. Outflow and Storage change values are from the Total outflow and Net groundwater withdrawals columns in table 17, respectively. BCM, Basin Characterization Model]

Hydrographic area	Inflow	Outflow	Storage change	Imbalance ¹
Southern Monitor Valley	12,000	13,000	-550	-450
Northern Monitor Valley	6,300	6,300	0	0
Antelope Valley	5,200	5,600	-420	20
Kobeh Valley	17,000	18,000	-600	-400
Stevens Basin	200	200	0	0
Diamond Valley	35,000	96,000	² -61,000	0
Diamond Valley flow system	70,000	133,000	² -63,000	0

¹Imbalance is equal to inflow minus outflow minus storage change

²Reduction in spring discharge in Diamond Valley was estimated to be 6,000 acre-feet per year.

Groundwater is the source of nearly all the water supply in Diamond Valley, and it is derived from the depletion of groundwater storage; the capture of ET_{gw} (which includes reduction in spring discharge); and, to a lesser extent, recycled irrigation water. Available groundwater supply typically is limited to the amount of ET_{gw} that can be captured by pumping. Because agricultural development in the southern part of Diamond Valley was distant from the GDA (plate 1), most groundwater removed from the southern part of the valley came from storage. Whether the estimated 6,000 acre-ft/yr of spring-flow loss since pre-development in the northern part of Diamond Valley is entirely related to groundwater withdrawals or, is in part related to a decrease in precipitation is unknown. If the combination of net pumpage and ET_{gw} continues to exceed pre-development ETgw, water levels are likely to decline indefinitely, precluding establishment of a new equilibrium.

The overall groundwater budget for the DVFS under recent (2011–12) conditions was not in balance. Only if the volume of storage change, assumed to equal net ground-water withdrawals, was included, could the budget be considered in balance. Total annual inflow to the DVFS was about 70,000 acre-ft/yr, whereas outflow was nearly twice that (133,000 acre-ft/yr), resulting in an average imbalance between inflow and outflow of about 63,000 acre-ft/yr during 2011–12 (table 19). The calculated imbalance was only about 9 percent less than the estimated storage change and reflected the uncertainty inherent in estimated budget components.

Limitations of Methodology

The accuracy of the groundwater budgets presented here is limited by the accuracy of the estimated inflow and outflow components. The largest independently derived water-budget components included groundwater discharge by ET, net groundwater withdrawals, and storage loss in Diamond Valley. Subsurface-flow estimates represented smaller, but noteworthy, components, especially in Diamond Valley.

Annual ET_{gw} documented in this report has probable uncertainties averaging 16 percent for site-based estimates and more than 10 percent for the entire DVFS. Annual site-based ET estimates were considered to be of good quality, within the limits of the assumptions, because accepted data processing and correction methods were applied. The mean energybalance ratio calculated for all sites and water years (0.9) was noticeably greater than the mean for other ET studies. The probable uncertainty in basin-scale estimates ranged from 13 percent for northern Monitor Valley to 23 percent for Diamond Valley. In Kobeh Valley, the probable uncertainty was 16 percent, and it incorporated EVI scene variability and site-based estimate uncertainties used to scale estimates to the basin level. In addition to uncertainties evaluated in Kobeh Valley, probable uncertainties in southern and northern Monitor, Antelope, and Diamond Valleys incorporated an additional 10 percent uncertainty to account for applying the rates measured in Kobeh Valley. The accuracy of site-based ET_{gw} estimates was limited by site-based ETgw measurements, a lack of ETgw measurements in the DVFS basins other than Kobeh Valley, and any potential errors in differentiating ET units and assigning ET_{gw} rates. Site-based ET_{gw} was limited by the accuracy of the eddy-covariance method to estimate ET, the limited spatial extent of ET measurements, and the period during which ET and precipitation were measured.

The accuracy of basin-scale ET_{gw} estimates was limited by the following assumptions: (1) ET_{gw} was restricted to the GDA; (2) ET_{gw} from vegetated ET units was adequately characterized by linear relations with vegetation indices; (3) ET_{gw} rates from the playa ET unit in the DVFS were equivalent to playa ET_{gw} rates in Dixie Valley, Nev.; (4) differences in ET_{gw} among basins were primarily driven by vegetation density and precipitation magnitudes, and soil characteristics, depth to water, surface water, and effects related to confined or unconfined aquifers were negligible by comparison; (5) precipitation-adjusted ET_{gw} estimates from Kobeh Valley were comparable to unmeasured rates in other DVFS basins, and relative differences in 30-year average annual PRISM precipitation model data for other DVFS basins were accurate; and (6) basin-scale ETgw estimates were representative of predevelopment conditions.

The accuracy of ET_{gw} estimates can be improved and uncertainty reduced by establishing additional ET and precipitation sites in the GDA of each discharging basin and by measuring for longer periods than in this study. As was demonstrated by Moreo and others (2007), small changes in precipitation can affect ETgw rates in a basin. Similarly, application of ET_{gw}-vegetation index relations from measured to unmeasured basins can lead to errors in basin-scale discharge estimates. Establishing ET sites in each basin would decrease the amount of interpolation and extrapolation and provide a dataset that allows the effects of differences in precipitation, soil texture, background reflectance, depth to groundwater, and phreatophyte distributions to be evaluated.

The accuracy of groundwater withdrawals, storage loss, and subsurface-flow estimates were limited by the simplifying assumptions used to compute these components. Limiting assumptions for groundwater withdrawal estimates were (1) a net groundwater-pumping rate of 2.7 acre-ft/acre accurately represented the volume of water used by crops and pastureland, and (2) the irrigated acreage reported to the State of Nevada was accurate. Estimates of groundwater-irrigated acreage in Diamond Valley and other valleys made from remotely sensed imagery produced results similar to values reported by the State; therefore these estimates were considered relatively accurate. The assumption that storage loss was equivalent to groundwater withdrawals was considered adequate because, in Diamond Valley and the DVFS at large, most groundwater was withdrawn outside the GDA or along the sparse edge of the GDA, and the leading edge of the cone of depression in southern Diamond Valley was coincident with the southern extent of the GDA.

The accuracy of subsurface-flow estimates was limited by the hydraulic variables used, such as flow sections, hydraulic gradients, and transmissivity. Subsurface-flow estimates could be improved by having additional wells between basins to more accurately measure hydraulic gradients and by using transmissivity estimates derived from aquifer tests rather than specific-capacity data, as were used by others and applied in this study.

Summary

The Diamond Valley flow system (DVFS), as defined by Harrill and others (1983), consists of six hydrographic areas in central Nevada that are hydrologically connected. Concerns relating to continued water-resources development in the DVFS resulted in a phased hydrologic investigation that began in 2005. The culmination of the phased approach, presented in this report, was designed to increase understanding of the groundwater resources in the DVFS by characterizing the groundwater quality and developing groundwater budgets representing pre-development (pre-1950) and recent conditions (average annual for 2011–12).

The large playa in the north part of Diamond Valley was the terminus of the groundwater-flow system before large scale groundwater withdrawals began in the south part of Diamond Valley. Sometime around the late 1960s, a groundwater divide developed between the area of natural discharge in the north part of Diamond Valley and the area of groundwater development in the south part. The estimated position of the groundwater divide appears to have migrated northward since 2005. This migration indicates that the cone of depression caused by groundwater pumping in the south is expanding radially, has not reached equilibrium, and, eventually, can lead to southward movement of poor-quality groundwater. In general, water-level altitudes and groundwater-flow directions have not changed since 2005 in the other hydrographic areas that make up the DVFS.

The majority of groundwater samples from Diamond, Antelope, northern Little Smoky, and southern and northern Monitor Valleys, and about half the samples from Kobeh Valley, were a calcium-bicarbonate water type. Groundwater samples throughout southern Kobeh Valley, central Diamond Valley, and southern Monitor Valley were a sodium-bicarbonate water type. As groundwater moved from the basin periphery in Diamond Valley from the south to the north, the cation chemistry changed from predominately a calcium-magnesium to a sodium type. Sulfate water types with various cation proportions were found in the northern part of southern Monitor Valley, the western part of Kobeh Valley, and west-central Diamond Valley. Groundwater quality in the DVFS generally was within acceptable drinking-water standards. Of the 100 well and spring sites sampled, only 10 exceed the secondary maximum contaminant level (MCL) for total dissolved solids (TDS) of 500 milligrams per liter.

Stable-isotope signatures of oxygen-18 and deuterium in groundwater and precipitation indicated recharge in the DVFS was relatively recent and was derived from cool-season precipitation. Precipitation samples collected at the four Kobeh Valley evapotranspiration (ET) sites exhibited a strong seasonal pattern with more evaporative enrichment in samples collected during warmer months (July, August, and September) compared to samples collected in cooler months (October, November, and February). Groundwater sampled from 34 well and spring sites was slightly enriched in oxygen-18 relative to the global meteoric water line. This enrichment could reflect groundwater interaction with warmer water along deep flow paths.

JA1142

76 Budgets and Chemical Characterization of Groundwater for the Diamond Valley Flow System, Central Nevada, 2011–12

Groundwater budgets summarize groundwater inflows, outflows, and changes in groundwater storage. Groundwater conditions in the DVFS prior to about 1950 were considered to be in dynamic equilibrium and were assumed to be representative of pre-development conditions, where groundwater inflow was approximately equal to groundwater outflow, and changes in groundwater storage were negligible. Once pumping began, the equilibrium between inflow and outflow was disrupted, and the source of the pumped groundwater needed to be accounted for in a post-development budget. In the DVFS, most pumped water was accounted for by a decrease in groundwater storage and by the capture of natural groundwater discharge, ET_{gw} .

Pre-development (pre-1950) and recent (2011-12) groundwater budgets were developed for each hydrographic area in the DVFS. The pre-development budget included natural groundwater discharge by ET, whereas the recent budget (2011-12) included discharge by ET plus groundwater withdrawals and related decreases in groundwater storage change and declines in spring flow. Components of groundwater outflow included ET by phreatophytes and bare soil, and evaporation from playas (collectively called groundwater evapotranspiration; ETgw), net groundwater withdrawals, and subsurface outflow. Components of groundwater inflow included recharge from mountain block (in place) precipitation, infiltration of streamflow and runoff, and subsurface inflow from adjacent basins. Subsurface (interbasin) flow between basins represented small, but important, components of individual hydrographic-area budgets.

Site estimates of groundwater discharge in Kobeh Valley and net irrigation-water requirements for alfalfa in Diamond Valley were combined with satellite imagery to scale groundwater discharge from the site to the basin level. Annual site-scale ET_{gw} estimates increased with increasing vegetation density from 0.15 feet per year (ft/yr) at site 1 to 1.13 ft/yr at site 4. A vegetation index- ET_{gw} relation was used to partition the groundwater discharge area (GDA) into shrubland and grassland ET units and to calculate basin-scale ET_{gw} for each of those units, whereas playa ET units were delineated with satellite and aerial imagery, and discharge rates from a recent nearby study were used. Recent average annual basin-scale ET_{gw} estimates ranged from 0 in Stevens Basin to 29,000 acre-ft/yr in Diamond Valley. An additional 6,000 acre-ft/yr of spring-flow loss since pre-development time was included in the total outflow from Diamond Valley (35,000 acre-ft/yr). This 6,000 acre-ft/yr most likely represented a maximum spring-flow loss, because seasonal variability in spring flow was not generally known. The estimated groundwater discharge from the shrubland ET unit accounted for 80 percent or more of total discharge for each valley, except for northern Monitor Valley, where shrubland accounted for only 57 percent of total discharge, and grassland accounted for the remainder. Playas covered about 35 percent of Diamond Valley and 4 percent of southern Monitor Valley, but the playa ET unit accounted for only about 6 percent and 1 percent of discharge in those valleys, respectively.

Groundwater withdrawals in the DVFS mostly supported agriculture in the southern part of Diamond Valley. Estimates of net groundwater withdrawals were determined by assuming 10 percent of the gross pumpage returns to the groundwater system. Net groundwater withdrawals were determined by the product of irrigated acres and 2.7 acre-ft/acre and were considered to be minimum values. The average annual estimates of groundwater pumping (2011–12) ranged from 0 in northern Monitor Valley and Stevens Basin to 67,000 acre-ft/yr in Diamond Valley. Estimates of net groundwater pumpage were assumed to be equivalent to the change in groundwater storage minus the decrease in ET_{gw} .

In the DVFS, recharge to the groundwater system from precipitation was minimally affected by groundwater development and was assumed to be relatively constant with time. Under steady-state conditions and limited groundwater development, inflow derived from precipitation and subsurface inflow equals outflow derived from groundwater ET and subsurface outflow. For this study, estimates of recharge from precipitation were based on a water-balance relation where recharge was equivalent to the sum of ET_{gw} and net subsurface outflow. The average annual groundwater inflow ranged from 200 acre-ft/yr in Stevens Basin to 35,000 acre-ft/yr in Diamond Valley.

Subsurface flow through the basin-fill aquifer between basins was re-evaluated in this study using transmissivity estimates made previously, groundwater flow sections derived from remotely sensed imagery, and hydraulic gradients determined from 2012 water-level data. Subsurface outflow to adjacent basins in the DVFS ranged from 0 acre-ft from Diamond Valley to 3,400 acre-ft from northern Monitor Valley to the western part of Kobeh Valley. Recent subsurface-inflow estimates to adjacent basins in the DVFS ranged from 0 in southern Monitor Valley, Antelope Valley, and Stevens Basin to 4,200 acre-ft/yr to Kobeh Valley. Not enough information was available to estimate subsurface inflow to Diamond Valley.

Under pre-development conditions, inflows equaled outflows, and individual hydrographic areas were in balance. Inflow and outflow values ranged from 200 acre-ft/yr for Stevens Basin to 35,000 acre-ft/yr for Diamond Valley. The DVFS was also in balance at about 70,000 acre-ft/yr. Under recent conditions, estimates of outflow were greater than inflow for most areas; however, the imbalances were generally accounted for by estimates of net groundwater pumpage, which was assumed to be equivalent to groundwater-storage change. Imbalances computed for all areas, except Diamond Valley, generally were less than10 percent of inflow and outflow estimates.

The overall groundwater budget for the DVFS under recent (2011–12) conditions was generally in balance, if storage change was considered. Total annual inflow to the DVFS was about 70,000 acre-ft/yr, whereas outflow was nearly twice that, resulting in an imbalance of about 63,000 acre-ft/yr during 2011–12. The calculated imbalance was about 9 percent less than the estimated storage change and was a result of the uncertainty in estimated budget components.

JA1143

References Cited

- Allander, K.K, Smith, J.L, and Johnson, M.J., 2009, Evapotranspiration from the Lower Walker River Basin, West-Central Nevada, Water Years 2005–07: U.S. Geological Survey Scientific Investigations Report 2009–5079, 63 p., *http:// pubs.usgs.gov/sir/2009/5079/*.
- Arakel, A.V., Jacobson, G., and Lyons, W.B., 1990, Sedimentwater interaction as a control on geochemical evolution of playa lake systems in the Australian arid interior: Hydrobiologia, v. 197, p. 1–12.
- Berger, D.L., Johnson, M.J., Tumbush, M.L., and Mackay, J., 2001, Estimates of evapotranspiration from the Ruby Lake National Wildlife Refuge Area, Ruby Valley, northeastern Nevada, May 1999–October 2000: U.S. Geological Survey Water-Resources Investigations Report 01–4234, 38 p., http://pubs.usgs.gov/wri/wri014234/.

Bowen, I.S., 1926, The ratio of heat losses by conduction and by evaporation from any water surface: Physical Review, v. 27, p. 779–787.

- Brooks, L.E., Masbruch, M.D., Sweetkind, D.S., and Buto, S.G., 2014, Steady-state numerical groundwater flow model of the Great Basin carbonate and alluvial aquifer system: U.S. Geological Survey Scientific Investigations Report 2014–5213, 124 p.
- Campbell, G.S., and Norman, J.M., 1998, An Introduction to Environmental Biophysics (2nd ed.): New York, Springer-Verlag, 286 p.
- Campbell Scientific, Inc., 2010, Instruction manual for NR-LITE Net Radiometer, revision 5/10, accessed May 6, 2015, at https://s.campbellsci.com/documents/us/manuals/nr-lite.pdf.
- Clark, I., and Fritz, P., 1997, Environmental isotopes in hydrogeology: Boca Raton, Fla., CRC Press, 328 p.
- Craig, H., 1961, Isotopic variations in meteoric waters: Science, v. 133, p. 1,702–1,703.
- Drever, J.I., 1988, The geochemistry of nature water (second ed.): Englewood Cliffs, New Jersey, , Prentice Hall, Inc., 437 p.

Eakin, T.E., 1962, Ground-water appraisal of Diamond Valley, Eureka and Elko Counties, Nevada: Nevada Department of Conservation and Natural Resources, Ground-Water Resources Reconnaissance Series Report 6, 60 p.

Eakin, T.E., Maxey, G.B., Robinson, T.W., Fredericks, J.C., and Leltz, O.J., 1951, Contributions to the hydrology of eastern Nevada: Nevada State Engineer, Water Resources Bulletin 12, 171 p. Flint, A.L., Flint, L.E., Hevesi, J.A., and Blainey, J.M., 2004, Fundamental concepts of recharge in the Desert Southwest: a regional modeling perspective, *in* Hogan, J.F., Phillips, F.M., and Scanlon, B.R., eds., Groundwater recharge in a desert environment: The Southwestern United States: American Geophysical Union, Water Science and Applications Series, v. 9, p. 159–184.

Flint, A.L., and Flint, L.E., 2007, Application of the basin characterization model to estimate in-place recharge and runoff potential in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent areas in Nevada and Utah: U.S. Geological Survey Scientific Investigations Report 2007–5099, 20 p., http://pubs.usgs.gov/sir/2007/5099/.

- Foken, T., Leuning, R., Oncley, S.R., Mauder, M., and Aubinet, M., 2012, Corrections and data quality control, in Aubinet, M., and others, eds., Eddy covariance – A practical guide to measurement and data analysis: Springer Atmospheric Sciences, 438 p.
- Friedman, Irving, 1953, Deuterium content of natural waters and other substances: Geochimica et. Cosmochimica Acta, v. 4, p.89–103.
- Fuchs, M., 1987, Heat flux, *in* Klute, A., ed., Methods of soil analysis, part 1: Physical and mineralogical methods, Agronomy, a series of monographs: Madison, Wisc., American Society of Agronomy and Soil Science Society of America, 957–968.
- Garcia, C.A., Huntington, J.M., Buto, S.G., Moreo, M.T., Smith, J.L., and Andraski, B.J., 2014, Groundwater discharge by evapotranspiration, Dixie Valley, West-Central Nevada, March 2009–September 2011: U.S. Geological Survey Professional Paper 1805, 90 p., http://pubs.usgs.gov/pp/1805.
- Glenn, E.P., Huete, A.R., Nagler, P.L., Nelson, S.G., 2008, Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape: Sensors, v. 8, no. 4, p. 2136–2160.
- Hardman, George, 1936, Nevada precipitation and acreages of land by rainfall zones: University of Nevada, Reno, Agricultural Experiment Station Report, 10 p.
- Hardman, George, and Mason, H.G., 1949, Irrigated lands in Nevada: University of Nevada, Reno, Agricultural Experiment Station Bulletin 183, 57 p.
- Harrill, J.R., 1968, Hydrologic response to irrigation pumping in Diamond Valley, Eureka, and Elko Counties, Nevada, 1950–65: State of Nevada Department of Conservation and Natural Resources Water Resources Bulletin 35, 85 p.

JA1144 SE ROA 831

78 Budgets and Chemical Characterization of Groundwater for the Diamond Valley Flow System, Central Nevada, 2011–12

Harrill, J.R, Welch A.H., Prudic, D.E., Thomas, J.M., Carman, R.L., Plume, R.W., Gates, J.S., and Mason, J.L., 1983, Aquifer systems in the Great Basin region of Nevada, Utah, and adjacent states: A study plan: U.S. Geological Survey Open-File Report 82–445, 49 p., *http://pubs.er.usgs.gov/ publication/ofr82445*.

Harrill, J.R., Gates, J.S., and Thomas, J.M., 1988, Major groundwater flow systems in the Great Basin region of Nevada, Utah, and adjacent states: U.S. Geological Survey Hydrologic Investigations Atlas HA-694-C, scale 1:1,000,000, 2 sheets.

Heilweil, V.M. and Brooks, L.E., ed., 2011, Conceptual model of the Great Basin carbonate and alluvial aquifer system: U.S. Geological Survey Scientific Investigations Report 2010–5193, p. 73–125, http://pubs.usgs.gov/sir/2010/5193/.

Hem, J. D., 1985, Study and interpretation of the chemical characteristics of natural water, U.S. Geological Survey Water-Supply Paper 2254, 264 p., *http://pubs.usgs.gov/wsp/ wsp2254/*.

Houghton, J.G., Sakamoto, C.M., and Gifford, R.O., 1975, Nevada's weather and climate: Nevada Bureau of Mines and Geology Special Publication 2, 78 p.

Huete, A.R., Justice, C., and van Leeuwen, W., 1999, MODIS Vegetation Index (MOD 13), Version 3, Algorithm theoretical basis document, *http://modis.gsfc.nasa.gov/data/atbd/ atbd_mod13.pdf*.

Huntington, J.L., and Allen, R.G., 2010, Evapotranspiration and net irrigation water requirements for Nevada: Nevada Division of Water Resources, 260 p., http://water.nv.gov/mapping/et/Docs/Evapotranspiration_ and_Net_Irrigation_Requirements_for_Nevada_Compiled. pdf.

Huntington, J.M., Garcia, C.A., and Rosen, M.R., 2014, Hydrogeologic framework and occurrence, movement, and chemical characterization of groundwater in Dixie Valley, west-central Nevada: U.S. Geological Survey Scientific Investigations Report 2014–5152, 60 p., http://dx.doi.org/10.3133/sir20145152.

Knochenmus, L.A., Berger, D.L., Moreo, M.T., and Smith, J.L., 2011, Data network, collection, and analysis in the Diamond Valley flow system, central Nevada: U.S. Geological Survey Open-File Report 2011–1089, 24 p., http://pubs.usgs.gov/of/2011/1089/.

Laczniak, R.J., DeMeo, G.A., Reiner, S.R., Smith, J.L., and Nylund, W.E., 1999, Estimates of ground-water discharge as determined from measurements of evapotranspiration, Ash Meadows area, Nye County, Nevada: U.S. Geological Survey Water-Resources Investigations Report 99–4079, 70 p., http://pubs.usgs.gov/wri/wri994079/text/contents.htm. Laczniak, R.J., Smith, J.L., Elliot, P.E., DeMeo, G.A., and Chatigny, M.A., 2001, Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California: U.S. Geological Survey Water-Resources Investigations Report 01–4195, 51 p., http://pubs.usgs.gov/wri/wri014195/text/04_introduction. htm.

Laczniak, R.J., Flint, A.L., Moreo, M.T., Knochenmus, L.A., Lundmark, K.W., Pohll, G., Carroll, R.W.H., Smith, J.L., Welborn, T.L., Heilweil, V.M., Pavelko, M.T., Hershey, R.L., Thomas, J.M., Earman, S., and Lyles, B.F., 2008, Groundwater budgets, section *in* Welch, A.H., Bright, D.J., and Knochenmus, L.A., Water resources of the Basin and Range Carbonate-Rock Aquifer system, White Pine County, Nevada, and adjacent areas in Nevada and Utah: U.S. Scientific Investigations Report 2007–5261, p. 43–68, http://pubs.usgs.gov/sir/2007/5261/.

Larson, L.W. and E.L. Peck, 1974, Accuracy of precipitation measurements for hydrologic modeling: Water Resources Research, v. 10, no. 4, p. 857–863.

Lee, C.H., 1912, An intensive study of the water resources of a part of Owens Valley, California: U.S. Geological Survey Water-Supply Paper 294, 135 p.

Leuning, R., van Gorsel, E., Massman, W.J., and Isaac, P.R., 2012, Reflections on the surface energy imbalance problem: Agricultural and Forest Meteorology, v. 156, p. 65–74.

Masbruch, M.D., Heilweil, V.M., Buto, S.G., Brooks, L.E., Susong, D.D., Flint, A.L., Flint, L.E., and Garden, P.M., 2011, Estimated groundwater budgets, *in* Heilweil, V.M. and Brooks, L.E., ed., 2011, Conceptual model of the Great Basin carbonate and alluvial aquifer system: U.S. Geological Survey Scientific Investigations Report 2010–5193, p. 73–125, *http://pubs.usgs.gov/sir/2010/5193/*.

Massman, W.J., 2000, A simple method for estimating frequency response corrections for eddy covariance systems: Agricultural and Forest Meteorology, v. 104, no. 3, p. 185–198.

Maxey, G.B., and Eakin, T.E., 1949, Ground water in White River Valley, White Pine, Nye, and Lander Counties, Nevada: Nevada State Engineer, Water Resources Bulletin 8, 59 p.

Moore, C.J., 1986, Frequency response corrections for eddy correlation systems: Boundary-Layer Meteorology, v. 37, nos. 1–2, p. 17–35.

Moreo, M.T., and Swancar, A., 2013, Evaporation from Lake Mead, Nevada and Arizona, March 2010 through February 2012: U.S. Geological Survey Scientific Investigations Report 2013–5229, 40 p., *http://dx.doi.org/10.3133/ sir20135229*.

> JA1145 SE ROA 832

Moreo, M.T., Laczniak, R.J.,and Stannard, D.I., 2007, Evapotranspiration rate estimates of vegetation typical of ground-water discharge areas in the Basin and Range Carbonate-Rock aquifer system, Nevada and Utah, September 2005–August 2006: U.S. Geological Survey Scientific Investigations Report 2007–5078, 36 p., *http://pubs.usgs. gov/sir/2007/5078/*.

National Centers for Environmental Information (NCEI), National Oceanic and Atmospheric Administration, Department of Commerce, Climate Data Online, *http://www.ncdc. noaa.gov/cdo-web/datasets*, last accessed April 14, 2014.

Nešpor, V., and Sevruk, B., 1999, Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation: Journal of Atmospheric and Oceanic Technology, v. 16, no. 4, p. 450–464.

Nevada Administrative Code 445A.455, Revised March 2012, Chapter 445A—Water controls, secondary standards—General requirements: Nevada Administrative Code accessed January 14, 2014, at *http://www.leg.state.nv.us/nac/nac-*445a.html.

Nevada Division of Water Resources, Spring and Streamflow Database, *http://water.nv.gov/data/streamflow/*, accessed June 12, 2013.

Nevada Revised Statutes, Underground water and well, Nevada State Engineer, Chapter 534.120.

Nichols, W.D., 2000, Regional groundwater evapotranspiration and ground-water budgets, Great Basin, Nevada: U.S. Geological Survey Professional Paper 1628, 82 p., http://pubs.er.usgs.gov/publication/pp1628.

Palmer, C.D., and Cherry, J.A., 1984, Geochemical evolution of groundwater in sequences of sedimentary rocks: Journal of Hydrology, v. 75, p. 27–65.

Priestley, C.H.B., and Taylor, R.J., 1972, On the assessment of surface heat flux and evaporation using large-scale parameters: Monthly Weather Review, v. 100, p. 81–92.

PRISM Climate Group, Oregon State University, *http://prism. oregonstate.edu*, last accessed December, 2014.

Prudic, D.E., Harrill, J.R., and Burbey, T.J., 1995, Conceptual evaluation of regional ground-water flow in the Carbonate-Rock Province of the Great Basin, Nevada, Utah, and adjacent states: U.S. Geological Survey Professional Paper 1409–d, 102 p., http://pubs.er.usgs.gov/publication/ pp1409D.

Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., and Sorooshian, S., 1994, A modified soil adjusted vegetation index: Remote Sensing of Environment, v. 48, no. 2, p. 119–126.

Roberts, R. J., Montgomery, K. M., and Lehner, R. E., 1967, Geology and mineral resources of Eureka County, Nevada: Nevada Bureau of Mines and Geology Bulletin 64, 152 p. Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W., 1974, Monitoring vegetation systems in the great plains with ERTS: Proceedings of the third Earth Resources Technology Satellite-1 Symposium: Washington D.C., NASA, Scientific and Technical Information Office, p. 309–317.

Rush, F.E., and Everett, D.E., 1964, Ground-water appraisal of Monitor, Antelope, and Kobeh Valleys, Nevada: Nevada Department of Conservation and Natural Resources, Ground-Water Resources Reconnaissance Report 30, 45 p.

Rush, F.E., and Everett, D.E., 1966, Water-resources appraisal of Little Fish Lake, Hot Creek, and Little Smokey Valleys, Nevada: Nevada Department of Conservation and Natural Resources, Ground-Water Resources Reconnaissance Report 38, 38 p.

Schuepp, P.H., Leclerc, M.Y., Macpherson, J.I., and Desjardins, R.L., 1990, Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation: Boundary-Layer Meteorology, v. 50, p. 355–373.

Shoemaker, W.B., Lopez, C.D., and Duever, M.J., 2011, Evapotranspiration over spatially extensive plant communities in the Big Cypress National Preserve, southern Florida, 2007–10: U.S. Geological Survey Scientific Investigations Report 2011–5212, 46 p., *http://pubs.usgs.gov/ sir/2011/5212/*.

Shuttleworth, J.W., 1993, Evaporation, in Maidment, D.R., ed., Handbook of hydrology: New Your, McGraw-Hill, Inc., p. 4.1–4.53.

Smith, J.L., Laczniak, R.J., Moreo, M.T., and Welborn, T.L., 2007, Mapping evapotranspiration units in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent areas in Nevada and Utah: U.S. Geological Survey Scientific Investigations Report 2007–5087, 20 p., http://pubs.usgs.gov/sir/2007/5087/.

Smith, R.L., 1974, Ecology and field biology (2nd ed.): New York, Harper and Row.

Stull, R.B., 1988, An introduction to boundary layer meteorology: Kluwer Academic Publishers, The Netherlands, 666 p.

Swinbank, W.C., 1951, The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere: Journal of Meteorology, v. 8, p. 135–145.

Tanner, B.D., and Greene, J.P., 1989, Estimate of sensible heat and water-vapor fluxes using eddy-correlation methods— Final report: Prepared for U.S. Army Dugway Proving Grounds: U.S. Army, Dugway, Utah, 17 p.

Theis, C.V., 1940, The source of water derived from wells: Civil Engineering, v. 10, no. 5, p. 277–280.

> JA1146 SE ROA 833

80 Budgets and Chemical Characterization of Groundwater for the Diamond Valley Flow System, Central Nevada, 2011–12

- Thomas, J.M., Welch, A.H., and Dettinger, M.D., 1996, Geochemistry and isotope hydrology of representative aquifers in the Great Basin region of Nevada, Utah, and adjacent States, U.S. Geological Survey Professional Paper 1409-C, 100 p., https://pubs.er.usgs.gov/publication/pp1409C.
- Tumbusch, M.L., and Plume, R.W., 2006, Hydrogeologic framework and ground water in basin-fill deposits of the Diamond Valley flow system, Central Nevada: U.S. Geological Survey Scientific Investigation Report 2006–5249, 38 p., http://pubs.usgs.gov/sir/2006/5249/.
- U.S. Census Bureau, 2015a, State and County Quickfacts, last accessed April 14, 2015, at *http://www.census.gov/quick-facts/*.
- U.S. Census Bureau, 2015b, 2010 Population finder, last accessed April 14, 2015, at *http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml#*.
- U.S. Environmental Protection Agency, 2009, National primary drinking water regulations: U.S. Environmental Protection Agency, document EPA 816-F-09-0004, 6 p., accessed February 16, 2012, at *http://water.epa.gov/drink/contaminants/upload/mcl-2.pdf*.
- U.S. Geological Survey, 2012a, Landsat—A global land-imaging mission: U.S. Geological Survey Fact Sheet 2012–3072, 4 p., *http://pubs.usgs.gov/fs/2012/3072/*.
- U.S. Geological Survey, 2012b, Landsat ecosystem disturbance adaptive processing system (LEDAPS)—Algorithm description document, version 1.3: U.S. Geological Survey, 20 p., accessed December 10, 2013, at http://landsat.usgs.gov/documents/ledaps_add.pdf.

- Webb, E.K., Pearman, G.I., and Leuning, R., 1980, Correction of flux measurements for density effects due to heat and water vapour transfer: Quarterly Journal of the Royal Meteorological Society, v. 106, p. 85–100.
- Western Region Climate Center, 2015, Cooperative climatological data summaries for Nevada, last accessed April 14, 2015, at http://www.wrcc.dri.edu/summary/Climsmnv.html.
- White, W.N., 1932, A method of estimating ground-water supplies based on discharge by plants and evaporation from soil—results of investigations in Escalante Valley, Utah, in Contributions to the hydrology of the United States, 1932:
 U.S. Geological Survey Water Supply Paper 659, p. 1–105, *http://pubs.er.usgs.gov/publication/wsp659A*.
- Yang, D., Goodison, B.E., Metcalfe, J.R., Golubev, V.S., Bates, R., Pangburn, T., and Hanson, C.L., 1996, Accuracy of NWS 8" standard nonrecording precipitation gauge— Results and application of WMO intercomparison: Journal of Atmospheric and Oceanic Technology, v. 15, p. 54–68.
- Young, A.A., and Blaney, H.F., 1942, Use of water by native vegetation: California Department of Public Works, Division of Water Resources Bulletin 50, 154 p.

Appendix 1: Description of Spatial Datasets

The U.S. Geological Survey (USGS) Water Resources Mission Area (WMA) maintains a clearinghouse for publicly available geographic information system (GIS) data on the USGS WMA National Spatial Data Infrastructure (NSDI) node. The NSDI is a physical, organizational, and virtual network designed to enable the development and sharing of digital geographic information resources (Federal Geographic Data Committee, accessed January 7, 2014, at http://www. fgdc.gov/). The GIS datasets created in conjunction with this study have been placed on the WMA NSDI node for public access. Brief descriptions of the datasets are included in this appendix. Complete dataset descriptions, including source documentation and processing steps, can be accessed in the metadata documents accompanying the datasets on the WMA NSDI node. The datasets are in GIS format and require specialized software to view.

Water-Level Altitude Contours for the Diamond Valley Flow System, Central Nevada, 2012

This dataset represents 2012 water levels in the Diamond Valley Flow System (DVFS) depicted on plate 1 of the report associated with this appendix. Water-level contours were developed using data from wells primarily measured in 2012, although earlier water-level data in select wells were used in cases where no new data were available and water levels were not expected to have changed over time. Detailed information about the sites used to construct these contours is available in the main body of the associated report. The dataset can be downloaded from the WMA NSDI node at *http://dx.doi.org/10.5066/F71J97VZ*.

Irrigated Agricultural Lands and Associated Land Disturbance in the Diamond Valley Flow System, Central Nevada, 2011

This dataset represents agricultural lands assumed to be irrigated in 2011 and associated land disturbances in the DVFS. The data are depicted on plate 1 of the report associated with this appendix. The locations of probable irrigated agricultural lands were interpreted using Landsat imagery from the summer of 2011, National Agricultural Imagery Program imagery from 2010, and well-water use information from the U.S. Geological Survey National Water Information System. Some areas classified as agricultural lands could be irrigated using diverted surface water or springs. Associated disturbances are areas surrounding agricultural lands that might not be irrigated, but have been disturbed as a result of agricultural or other anthropogenic activities. The dataset can be downloaded from the WMA NSDI node at http://dx.doi. org/10.5066/F7JM27QV.

Groundwater Discharge Area for the Diamond Valley Flow System, Central Nevada

This dataset represents the groundwater discharge area (GDA) in the DVFS. The GDA depicts the general boundary of groundwater discharge by evapotranspiration (ET) from phreatophytic plants and moist bare soil. Vegetated areas in the GDA are composed of phreatophytic shrubs with smaller areas of grassland, marshland, xeric vegetation, bare soil, and agricultural lands, where phreatophytic shrubs were present historically. Vegetated areas outside the GDA primarily are composed of xeric vegetation and bare soil, although very sparse phreatophytic shrubs could be present on the outer margins of the boundary. The GDA was mapped in the summer of 2011 using field reconnaissance and supporting digital data. Additional supporting field data were gathered in the fall of 2014. The dataset can be downloaded from the WMA NSDI node at *http://dx.doi.org/10.5066/F75B00K7*.

Summer Mean Enhanced Vegetation Index for the Diamond Valley Flow System Groundwater Discharge Area, 2010

This dataset represents the mean Enhanced Vegetation Index (EVI; Huete, 1999) of two Landsat 5 Thematic Mapper scenes from the summer of 2010 in the DVFS. The EVI is a type of vegetation index that uses a canopy background adjustment factor to reduce the influence of soil and background reflectance on the index to increase the signal from healthy vegetation in the image. The EVI includes an additional correction in the calculation to reduce the effect of atmospheric aerosols on the index. The data were used to evaluate and estimate groundwater discharge by ET by relating the mean of EVI calculated from July 24 and August 25, 2010, Landsat scenes to ET measured at four eddy-covariance sites in areas of phreatophytic vegetation of varying types and densities in Kobeh Valley, Nevada. Values of ET were extrapolated for all valleys in the study area using the relation developed for Kobeh valley. The dataset can be downloaded from the WMA NSDI node at *http://dx.doi.org/10.5066/F7930R9K*.

Evapotranspiration Units for the Diamond Valley Flow System, Central Nevada, 2010

This dataset represents ET units derived from the mean EVI calculated from two Landsat 5 Thematic Mapper scenes from the summer of 2010 in the DVFS. The ET units were defined in the DVFS GDA to group areas characterized by similar phreatophytic vegetation type and cover and to extrapolate site-scale groundwater ET estimates across the study area. This dataset represents three ET units: shrubland, grassland, and playa. The grassland ET unit is composed of

> JA1148 SE ROA 835

grassland, meadow, and marshland vegetation types. The ET units were developed using a combination of field reconnaissance, EVI and site-scale discharge measurements. The data were used to evaluate and estimate groundwater discharge by ET in the study area. The dataset can be downloaded from the WMA NSDI node at *http://dx.doi.org/10.5066/F7DV1H0J*.

References Cited

Huete, A., Justice, C., and van Leeuwen, W., 1999, MODIS Vegetation Index (MOD 13), Version 3, Algorithm theoretical basis document, *http://modis.gsfc.nasa.gov/data/atbd/ atbd_mod13.pdf*.

> JA1149 SE ROA 836

Appendix 2: Water-Quality Data

Quality Assurance

Water-chemistry sampling followed U.S. Geological Survey (USGS) National Field Manual methods (U.S. Geological Survey, variously dated). Samples analyzed for major ions and trace metals were sent to the USGS National Water Quality Laboratory in Denver, Colorado. Samples analyzed for stable isotopes were sent to the USGS Isotope Laboratory in Reston, Virginia.

A field blank was run during the 2012 sampling event for quality-assurance purposes. This quality-assurance sample was used to ensure that sampling equipment (pumps, sampling lines, and bottles) and actions used to collect, process, and analyze environmental samples did not contaminate environmental samples. Results indicated that concentrations of all constituents used in this study's water quality analyses were at or below laboratory detection limits. Internal components of the pump are made of stainless steel, which can corrode and release trace metals (Wilde, 2004), even after diligent decontamination. Although no corrosion was observed on the pump, concentrations of several major ions (calcium, sodium, chloride, magnesium, silica, and manganese) measured in the field blank were at concentrations above laboratory reporting limits. These major-ion concentrations were within 3 percent of those concentrations in environmental samples; therefore, this level of contamination relative to the environmental concentrations indicates no substantial effect was imparted on data interpretations.

A sequential replicate (U.S. Geological Survey, 2006) sample was collected from site 126 in 2012 to quantify variability associated with the collection and processing of a sample. Replicate and environmental-sample concentrations were generally similar (coefficient of variation less than 5 percent), with the exception of aluminum (coefficient of variation 27 percent), where the environmental and replicate concentrations were 4.5 and 6.6 micrograms per liter, respectively (table 6 in the report associated with this appendix).

References Cited

- U.S. Geological Survey, variously dated, National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chaps. A1–A9, available online at *http://water.usgs.gov/ owq/FieldManual*.
- U.S. Geological Survey, 2006, Collection of water samples (ver. 2.0): U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A4, September 2006, accessed February 3, 2014, at *http://pubs.water.usgs.gov/twri9A4/*.

Wilde, F.D., ed., 2004, Cleaning of equipment for water sampling (ver. 2.0): U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A3, accessed October 22, 2009, at http://pubs.water.usgs.gov/twri9A3/.

> JA1150 SE ROA 837

For additional information, contact:

Director, Nevada Water Science Center U.S. Geological Survey 2730 N. Deer Run Rd. Carson City, NV 89701

http://nevada.usgs.gov/water/

JA1151 SE ROA 838

ISSN 2328-0328 (online) http://dx.doi.org/10.3133/sir20165055

JA1152 SE ROA 839

0.83

17.0%

Loss %:

800

700

600

500

Accounting Tract Efficiency															Accounting Track Depletion %	Model Cumulative Storage	Accounting Cumulative Storage	- C		Years
	100.00%		90.00%	80.00%	70.00%	60.00%	50.00%	40.00%			30.00%		20.00%			10.00%		0.00%	D	
		_				ı Factor	Depletion													
	21 0.83	21	4.5 5.3 6.2 7.1	8.1 9.2 10.7 12.4 14.5	17.0				7	0.0 1902.2	Ϋ,		04.22%			2038	-20	-10.79%		
	20 0.83	20	5.5 6.4 7.4 8.6	9.8 11.1 12.9 14.9 17.4	20.4					0.0 1902.2	-14.6333		7		97.59%	2037	L.	-10.39%		
	19 0.83	19		11.8 13.4 15.5 17.9 21.0	24.6				2036	0.0 1902.2	-16.4759	17.17%	02.03% 137.7911	7.24% 92.76%	97.10%	2036	-188.81	-9.93%		
:	18 0.83	18	7.9 9.3 10.8 12.5	14.2 16.1 18.7 21.6 25.3	29.7				2035	0.0 1902.2	-20.0618	18.04%	01.90% 166.0134	8.73% 91.27%	96.51%	2035	-177.064	-9.31%		
!	17 0.83	17		17.1 19.4 22.5 26.0 30.5	35.7				2034	0.0 1902.2	-23.8053	19.09%	200.0161	10.51% 89.49%	95.79%	2034	-163.123	-8.58%		
:	16 0.83	16	11.5 13.4 15.7 18.1	20.6 23.4 27.1 31.4 36.8	43.1				2033	0.0 1902.2	-29.3548	20.34%	79.00% 240.9832	12.67% 87.33%	94.93%	2033	-145.961	-7.67%		
:	15 0.83	15	13.9 16.2 18.9 21.8	24.8 28.1 32.6 37.8 44.3	51.9				2032	0.0 1902.2	-36.4678	410.2909 21.88% 	/0.12% 290.3412	15.26% 84.74%	93.89%	2032	-125.958	-6.62%		
	14 0.83	14	16.7 19.5 22.8 26.3	29.9 33.9 39.3 45.5 53.4	62.5				2031	0.0 1902.2	-46.4072	23.80%	70.20% 349.8087	18.39% 81.61%	92.64%	2031	-102.958	-5.41%		
	13 0.83	13	20.1 23.5 27.4 31.7	36.0 40.9 54.9 64.3	75.3				2030	0.0 1902.2	-59.2603	26.24%	/3./0% <mark>421.4563</mark>	22.16% 77.84%	91.13%	2030	-77.77.	-4.09%		
ICTORS	12 0.83	Е 12	24.2 28.3 33.1 38.1	43.4 49.2 57.1 66.1 77.5	90.7				2029	0.0 1902.2		29.36%	/0.04% 507.7787 4	26.69% 73.31%	89.31%	2029		-2.66%		
-ILIENUY FA	11 0.83	NTING TABI 11	29.2 34.1 39.8 46.0	52.3 59.3 68.8 79.6 93.3	109.3				2028	0.0 1902.2			611.7815	32.16% 67.84%	87.12%	2028		-1.27%		
	10 0.83	GE ACCOUI 10	35.2 41.1 48.0 55.4	63.0 71.4 82.9 95.9 112.5	131.7			E ACCOUNT	2027	158./ 1902.2			01.27% 737.0862 6	38.75% 61.25%	84.48%	2027		0.02%		
SIUKAGE ACCUUNI IKACI EFFICIENCY FACIUKS	9 0.83	TRACT STORAGE ACCOUNTING TABLE 9 10 11	42.4 49.5 57.8 66.7	75.9 86.1 99.8 115.6 135.5				MODELED RESULTS VS STORAGE ACCOUNT	2026	163.2 1743.5			729.3482 7	41.83% 58.17%	81.31%	STATISTICS 5 2026		0.92%		
DRAUIC	8 0.83	TR. 8	51.1 59.7 69.7 80.4	91.5 103.7 120.3 139.3				RESULTS \	2025	167.8 1580.3			715.4907 7	45.28% 54.72%	77.48%	STA1 2025		1.86%		
1	7 0.83	~	61.5 71.9 83.9 96.8	110.2 125.0 144.9				MODELEE	2024	1/4.6 1412.5		Ď	03.00% 694.2605 7	49.15% 50.85%		2024		2.83%		
,	6 0.83	9		132.8					2023	181.4 1237.9			661.8803 69	53.47% 46.53%	67.31%	2023		3.72%		
1	5 0.83	ъ		160.0					2022	192.7 1056.5			40.22% 616.0661 66	58.31% 41.69%		2022		4.53%		
	4 0.83	4	107.6 1 125.7 1 146.8 1 169.4 1	E .					2021	204.1 863.8	9		41.52% 4 549.5321 61	63.62% 36.38%		2021		5.14%		
	3 0.83	m	129.6 1 151.5 1 176.9 1 1						2020	213.1 659.8			50.34% 2 458.0344 54			2020		5.37%		
	2 0.83	2							2019	219.9 446.6		4	29.33% 3 338.7272 45	75.84% 6 24.16% 3		2019		5.17%		
	1 0.83	-	188.2 15						2018	226.7 226.7		'n	21.00% 2 188.1818 338	83.00% 7 17.00% 2		2018	23.	47.90016	5.37%	-205.169 10 700/
:	Year #: Trial and Error Factor:	Banked INPUT		192.7 181.4 174.6 167.8 163.2	158.7 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0			pe			2 185	8	1		1(47.		-2(
	Trial and E VALUES IN ACRE-FEET	1			2027 2028 2029 2030 2031	2031 2032 2033 2034 2035	2036 2037 2038			Model/Accounting Annual Banked Model/Accounting Cumulative Banked	Model Annual Storage	Model Cumulative Storage	Accounting Cumulative Storage	Accounting Cumulative Efficiency Accounting Cumulative Depletion %	Accounting Track Depletion %		Residual (Acct Sto - Mod Sto)	% Error Largest Overestimate	Largest % Overestimate	Largest Underestimate

400 Acre-Feet

300

200

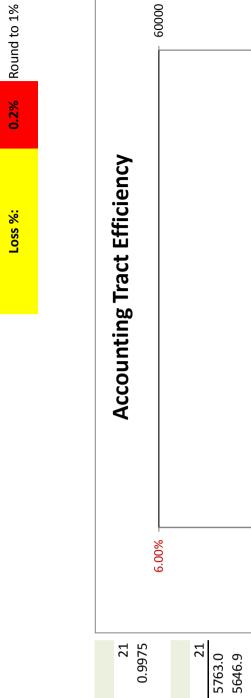
100

0 20

ETERMINATION C

NOTES:

Mount Hope numerical model was used to simulate natural losses of banked water in Diamond Valley. Baseline model was compared to model simulation that incorporated 10 years of banking where 10% of available water to pump is banked. Comparing the models allowed for the determination of the amount of additional storage in the aquifer and natural losses from the aquifer. Results from the model were then used to curve-match the modeled determination with a constant "efficiency rate". The efficiency rate represents the proportion of annual amount of banked water that would remain in the aquifer. The natural loss % is 1 minus the efficiency rate.


Banking Storage Account

Trial/Error Input:

0.9975

	Accounting Tract Efficiency																				Accounting Track Daulation &		Model Cumulative Storage	Accounting Cumulative Storage	-	10 15	Years	
	AC																									S		
																										0		
			0.00%) CC L	- %00.c			4.00%		actor	l noitel 3.00%	Dep		2.00% -					7000	2001				0.00%	C		
	21	9975		21	0 6 9 9	2	0	ъ						2038	0.0	7.6	149	40%	.60%	80.61	11%	5.12%		2038	6768 1.49%	2		
	20	0		20		4 5068.7 0 4945.6 2 4766.2								2037 20				5031 95	4	5058	, 4 ,				260.			
	19	75 0.9975		19		1 5081.4 4 4958.0 2 4778.2	4 4661.7 2 4539.8	0 4486.7						2036 20		7.6 52747.6		.47 50499.38 7% 95 74%		47 50707.38		4% 4.88%			196 207.9961 1% 0.39%			
	18	75 0.9975		18		9 5094.1 9 4970.4 2 4790.2	1 4673.4 6 4551.2	2 4498.0						2035 20		7.6 52747.6		.49 50674.47 1% 96.07%		.87 50834.47		1% 4.64%			331 159.996 1% 0 30%			
	17	75 0.9975		17		7 5106.9 4 4982.9 2 4802.2		5 4509.2						2034 20		7.6 52747.6		.13 50851.49 4% 96.41%		9.6 50961.87		7% 4.41%			79 110.3831 7% 0.21%			
	16	0.99		16		5 5119.7 9 4995.4 3 4814.2		9 4520.5						2033 20	0.0	7.6 52747.6		99 51026.13 5% 96 74%		64 51089.6		3% 4.17%			23 63.46879 1% 0.12%			
	15	0.99		15		4 5132.5 4 5007.9 4 4826.3	4 4708.6 0 4585.5	2 4531.9						2032 20		7.6 52747.6		57 51197.99 8% 97 06%		46 51217.64		9% 3.93%			66 19.64523 1% 0.04%			
	14	75 0.9975		14		3 5145.4 0 5020.4 5 4838.4	2 4720.4 5 4597.0	6 4543.2						2031 20		7.6 52747.6		9.1 51365.57 9% 97 38%		.69 51346 .00/ 07 240/		4% 3.69%			.03 -19.5666 n% -0.04%			
	13	0.99		13		2 5158.3 5 5033.0 6 4850.5	1 4732.2 1 4608.5	0 4554.6						2030 20	0.0	7.6 52747.6		58 51529.1 3% 97.69%		3.7 51474.69		3.44%			45 -54.4103 5% -0.10%			
J	0	0.99		12		2 5171.2 3 5045.6 8 4862.6		5 4566.0							0.0	7.6 52747.6		45 51687.58 3% 97 99%		03 51603.7		96% 3.20%			18 -83.8745 1% -0.16%			
	U1	0.99	TABLE			5184.2 5058.3 94874.8		9 4577.5						28 2029	0.0 0	.6 52747.6		81 51841.45 % 98 28%		69 51733.03		2			22 -108.418 1% -0.21%			
	10	75 0.9975	COUNTING	10		5197.2 5070.9 4887.0		4588.9						0UNT 2028		.6 52747.6		92 51987.81 % 98 56%		57 51862.69		% 2.72%			53 -125.122 % -0.24%			
ארע איני אינע אינע אינע אינע אינע אינע אינ	b b b b	0.99	TRACT STORAGE ACCOUNTING TABLE	6		5210.2 5083.7 4899.3		4600.4						MODELED RESULTS VS STORAGE ACCOUNT 2024 2025 2026 2027	.3 4612.0	.7 52747.6		.7 52125.92 % 98.82%		01 51992.67		% 2.47%		56	82 -133.253 % -0.25%			
	ANAUE ALL	75 0.9975	TRACT S	∞		5223.3 5096.4 911.6								ILTS VS STORA 25 2026	.9 4678.3	7	4	07 47639.7 % 98.97%		83 47511.01		3% 2.23%	STATISTICS		38 -128.682 % -0.77%			
Ĕ	7 T	75 0.9975		7		5236.4 5109.2 4923.9	4803.8							DELED RESULT 24 2025	.6 4815.9	.5 43457.4		39 43072.07 % 99 11%		51 42951.83		% 1.98%			34 -120.238 % -0.28%			
	9	,5 0.9975		9		5249.5 5122.0 4936.2									4	.9 38641.5		39 38352.39 % 99 25%		86 38243.61 % 08.07%		% 1.74%			17 -108.784 % -0.28%			
	ſ	5 0.9975		5		5262.6 5134.8								2 2023	5	(1)		33484.69 % 99.38%		87 33390.86 % 00.10%		% 1.49%)7 -93.8317 % -0.28%			
	4	,5 0.9975		4		5275.8								1 2022	.6 5289.1	.2 28545.2		9 28406.64 % 99 51%		1 28326.87 % 00 23%		% 1.24%			% -79.7707 % -0.28%			
		5 0.9975		3	6013.6 5892.4 5722.0 5480.9									0 2021	7 5494.6	6 23256.2		8 23170.29 % 99.63%		1 23108.81 270 27%		% 1.00%			:1 -61.4787 % -0.26%			
	6	5 0.9975		2	6028.6 5907.1 5736.3									9 2020	2	~		7 17714.78 % 99.74%		7 17672.1					1 -42.681 % -0.24%			
	-	5 0.9975		1	6043.8 5921.9									8 2019	1 5936.8	1 12010.9		9 11989.47 % 99 82%		9 11965.7 % 00 62%		% 0.50%			6 -23.7681 % -0.20%		% σ	%
		r: 0.9975		_	6058.9									2018	6074.1	6074.1	6067.439	6067.439 99 89%	0.11%	6058.9	0.25%	0.25%		2018	-8.53916 -0 14%	260.6768	0.49% -133.253	-0.28%
	Year #:	Trial and Error Factor:		Banked INPUT	6074.1 5936.8 5750.7 5494.6	5289.1 5147.7 4948.6	4815.9 4678.3	4612.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0			ed												
		Trial and		Ba	2018 2019 2020 2021	2022 2023 2024	2025 2026	2027 2028	2029 2030	2031 2032	2033 2034	2035 2036	2037 2038		al Banked	ulative Bank		ge Pncv	tion %	storage Hicioney	Jepletion %	ion %			Sto)			۵J
			VALUES IN ACRE-FEET	Year/Track											Model/Accounting Annual Banked	Model/Accounting Cumulative Banked	Model Annual Storage	Model Cumulative Storage Model Cumulative Efficiency	Model Cumulative Depletion %	Accounting Cumulative Storage	Accounting Cumulative Depletion %	Accounting Track Depletion %			Residual (Acct Sto - Mod Sto) % Frror	Largest Overestimate	Largest % Overestimate Largest Underestimate	Largest % Underestimate

feef

30000

20000

10000

0

20

40000

50000

m	

DETERMINATION OF YEAR-TO-YEAR LOSSES TO BANKED WATER: SOUTHERN DIAMOND VALLEY

NOTES:

Mount Hope numerical model was used to simulate natural losses of banked water in Diamond Valley. Baseline model was compared to model simulation that incorporated 10 years of banking where 10% of available water to pump is banked. Comparing the models allowed for the determination of the amount of additional storage in the aquifer and natural losses from the aquifer. Results from the model were then used to curve-match the modeled determination with a constant "efficiency rate". The efficiency rate represents the proportion of annual amount of banked water that would remain in the aquifer. The natural loss % is 1 minus the efficiency rate.

Banking Storage Account

	<u> </u>
	Fror
	_ <u>-</u>
	<u> </u>
	_
	7
	_
	pue
	_
	π
	Trial
	- H

STATE OF NEVADA

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES

DIVISION OF WATER RESOURCES

JASON KING, P.E. STATE ENGINEER

DIAMOND VALLEY HYDROGRAPHIC BASIN 10-153

CROP INVENTORY

CALENDAR YEAR 2013

Prepared by: Shannon McDaniel Landon Harris and Kyle Wolf

> JA1155 SE ROA 842

	Page
ABSTRACT	1
HYDROGRAPHIC BASIN SUMMARY	2
PURPOSE AND SCOPE	
DESCRIPTION OF THE STUDY AREA	
GROUNDWATER LEVELS	
METHODS TO ESTIMATE IRRIGATED ACREAGE	5
METHODS TO ESTIMATE PUMPAGE	5
TABLES	6
FIGURES	7
APPENDIX A. 2013 DIAMOND VALLEY CROP INVENTORY	

TABLE OF CONTENTS

LIST OF TABLES

	Page
Table 1. Diamond Valley historical irrigated acreage and pumpage data.	6

LIST OF FIGURES

Page Figure 1. Physiographic map of Diamond Valley (Hydrographic Basin 10-153)7	
Figure 2. Map showing Diamond Valley irrigated acreage and water level monitoring sites 8	
Figure 3. Graph showing Diamond Valley historical irrigated acreage and pumpage. The NIWR method to estimate pumpage was used starting in 2013; estimates may differ significantly from previous years. 9	

ABSTRACT

This inventory represents the status and usage of all permitted, certificated, and claims of vested right groundwater rights for irrigation purposes located within Diamond Valley, Hydrographic Basin 10-153, for the year 2013. **Only those groundwater rights associated with irrigation purposes are represented in this report**. For a listing and summary of all other manners of use within the basin please refer to the <u>Nevada Division of Water Resources Hydrographic Basin Summary</u>.

The data presented are valid for the time period of this report and may vary from previously published figures as water rights within the basin are subject to administrative action, such as certification, cancellation, forfeiture or withdrawal on a continuing basis.

For the year 2013, the permitted and certificated groundwater rights for irrigation purposes totaled **31,583 acres** with a total duty of 125,332 acre-feet within Diamond Valley. An estimated **25,252 acres** were irrigated and 75,037 acre-feet were pumped during 2013.

JA1157 SE ROA 844

HYDROGRAPHIC BASIN SUMMARY

HYDROGRAPHIC BASIN NUMBER	153, REGION 10
HYDROGRAPHIC BASIN NAME	DIAMOND VALLEY
COUNTIES	EUREKA AND ELKO
MAJOR COMMUNITIES	EUREKA
DESIGNATED BASIN	DESIGNATED - IRRIGATION DENIED
DENIALS BASED UPON WATER AVAILABILITY	ALL USES
ESTIMATED IRRIGATION PUMPAGE 2013 (ACRE-FEET)	75,037*

STATE ENGINEER'S ORDERS

<u>NO. 277 – PARTIAL DESIGNATION OF BASIN</u>	AU
<u>NO. 280 – AMENDED DESIGNATION OF BASIN</u>	AU
<u>NO. 541 – NOTICE OF CURTAILMENT</u>	DI
NO. 717 – NOTICE OF CURTAILMENT	JU
<u>NO. 809 – TOTALIZING METERS</u>	Dł
NO. 813 – AMENDMENT OF ORDER 809	FE
NO. 815 – AMENDED DESIGNATION OF BASIN	AI
NO. 1226 – AMENDED DESIGNATION OF BASIN	M

AUGUST 5, 1964 AUGUST 28, 1964 DECEMBER 22, 1975 JULY 10, 1978 DECEMBER 1, 1982 FEBRUARY 7, 1983 APRIL 4, 1983 MARCH 26, 2013

COMMITTED GROUNDWATER RESOURCE FOR IRRIGATION PURPOSES: 125,332 ACRE-FEET DATE: DECEMBER 2013

NOTE: Committed groundwater resource data are approximate for December 2013. Rights may be subject to change applications, certification, withdrawals, forfeiture and cancellations; each of these circumstances could impact the duty, diversion rate and acreage associated with a given right. Be advised this report acknowledges that other manner of uses may be present in the basin; however, only those groundwater rights associated with irrigation purposes are represented in this report.

* Acreage represented in this report may have surface water rights appurtenant. This report acknowledges those acres with surface water rights but is not intended to quantify, nor present any definitive use of those surface water rights. The data represent only the pumping of groundwater and the acreage to which it is applied.

PURPOSE AND SCOPE

The purpose of this report is to inventory all of the groundwater resources allocated to irrigation and described by the Office of the State Engineer, Nevada Division of Water Resources (NDWR), and to estimate the amount of groundwater pumped for irrigation purposes within the Diamond Valley Hydrographic Basin (10-153), for the year 2013.

DESCRIPTION OF THE STUDY AREA

The Diamond Valley Hydrographic Basin is located in central Nevada (Figure 1). Diamond Valley occupies approximately 735 square miles in Eureka and Elko Counties. The adjacent hydrographic basins are Huntington Valley (4-035) to the northeast, Pine Valley (4-053) to the northwest, Kobeh Valley (10-139) to the west, Antelope Valley (10-151) to the southwest, Little Smoky Valley, Northern Part (155A) and Newark Valley (10-154) to the east.

Diamond Valley is bounded by the Diamond Mountain Range to the east, by the Mahogany Hills to the south, and to the west by the Sulphur Spring Range. Diamond Valley is approximately 20 miles wide by 56 miles long with basin elevations ranging from approximately 5,760 feet above mean sea level on the valley floor to approximately 10,000 feet above mean sea level in the surrounding mountains. Irrigation occurs primarily in the south central part of the basin (Figure 2).

GROUNDWATER LEVELS

Depths to groundwater in Diamond Valley are measured by multiple agencies on an annual basis. Sites at which water level measurements are made by or reported to NDWR include:

<u>153 N20 E52 26AABC1</u>	<u>153 N20 E52 26AABC2</u>	153 N20 E53 02DDDD1
<u>153 N20 E53 04DDBB2</u>	<u>153 N20 E53 10DDDD2</u>	<u>153 N20 E53 20BC 01</u>
<u>153 N20 E53 21CDDC1</u>	<u>153 N20 E53 28ADC 01</u>	<u>153 N20 E53 30ABCC2</u>
153 N20 E53 30DCCC1	<u>153 N20 E53 32BBBA1</u>	153 N20 E53 32BDCC1
<u>153 N21 E52 04BBAA1</u>	<u>153 N21 E52 10AAAC1</u>	<u>153 N21 E52 10AAAC2</u>
153 N21 E53 01BCAA1	153 N21 E53 01CDCC2	<u>153 N21 E53 02CCAA1</u>
153 N21 E53 03BBDD2	<u>153 N21 E53 03CDBB2</u>	<u>153 N21 E53 04CDBB1</u>
<u>153 N21 E53 06CDBB2</u>	<u>153 N21 E53 08BACC1</u>	<u>153 N21 E53 08DCAA1</u>
153 N21 E53 09BBDD2	<u>153 N21 E53 09DBDD1</u>	<u>153 N21 E53 11CDBB2</u>
153 N21 E53 12CCBC2	<u>153 N21 E53 12DCAA2</u>	<u>153 N21 E53 13DA 1</u>
153 N21 E53 14CACC2	<u>153 N21 E53 15BACC2</u>	<u>153 N21 E53 16CCAA3</u>
153 N21 E53 20AACC2	<u>153 N21 E53 21DCAA2</u>	<u>153 N21 E53 22BDBB2</u>
<u>153 N21 E53 23AACC1</u>	<u>153 N21 E53 23DACC1</u>	<u>153 N21 E53 24ADBB1</u>
<u>153 N21 E53 24CDDD1</u>	<u>153 N21 E53 27ACAA3</u>	<u>153 N21 E53 28BBDD1</u>
153 N21 E53 33AACC2	<u>153 N21 E53 34DDB 02</u>	<u>153 N21 E53 35BDBB2</u>
153 N21 E53 36AD 1	153 N21 E53 36CDD 01	<u>153 N21 E54 05BDBB1</u>
153 N21 E54 05DCCC1	<u>153 N21 E54 08CDDD1</u>	<u>153 N21 E54 20BACC2</u>
153 N21 E54 20CCCC1	153 N21HE52 35ADD 2	153 N21HE54 32DCC 2
<u>153 N21HE54 34BBD 1</u>	<u>153 N22 E51 01CBAB1</u>	<u>153 N22 E51 01DBBB1</u>

<u>153 N22 E51 01DBBB2</u>	<u>153 N22 E51 12ADCD1</u>	<u>153 N22 E51H12DBBC1</u>
<u>153 N22 E51H13DADB1</u>	<u>153 N22 E52 07DBBD1</u>	<u>153 N22 E52 07DBBD2</u>
<u>153 N22 E52 11ACCB1</u>	<u>153 N22 E52 16CCCB1</u>	<u>153 N22 E52 17DDAC1</u>
<u>153 N22 E52 17DDCA1</u>	<u>153 N22 E52 18ACDB1</u>	<u>153 N22 E52 18CBDD1</u>
<u>153 N22 E52 18CBDD2</u>	<u>153 N22 E52 19CBBC1</u>	<u>153 N22 E52 20CBDC1</u>
<u>153 N22 E54 05CDBB2</u>	<u>153 N22 E54 05DDBB2</u>	<u>153 N22 E54 06CCCC1</u>
153 N22 E54 07DDCD2	153 N22 E54 18CADD1	<u>153 N22 E54 19CC 1</u>
153 N22 E54 32DDCD1 153 N23 E52 13BBA 1 153 N23 E53 31BBD 01 153 N23 E54 29CDDD2 153 N24 E53 06BDAB1	153 N22 E54 33BBDD1 153 N23 E53 27BB 1 153 N23 E54 20DD 1 153 N23 E54 30DDD 2 153 N25 E54 28BCBC1	<u>153 N23 E51 36ACDC1</u> <u>153 N23 E53 29CCCA1</u> <u>153 N23 E54 27ACC 1</u> <u>153 N23 E54 32CDD 01</u>

Groundwater level data have also been collected by the U.S. Geological Survey (USGS) and can be accessed through their website (<u>http://nevada.usgs.gov</u>).

METHODS TO ESTIMATE IRRIGATED ACREAGE

This report estimates the number of acres irrigated by the groundwater pumped under permits, certificates, and claims of vested right issued by the State Engineer. Table 1 and Figure 3 present the current and historic irrigated acreage and pumpage; Appendix A presents estimates detailed by certificate, permit, or vested claim number. The following methods were used to arrive at the estimated acreage:

- Field inspection of the place of use was conducted to estimate the number of acres under cultivation.
- In cases where field inspection of the place of use was not practical, aerial and/or satellite imagery were analyzed to determine acreages.

METHODS TO ESTIMATE PUMPAGE

This report estimates the amount of groundwater pumped under the permits and certificates issued by the Nevada State Engineer as well as claims of vested right in the Diamond Valley Hydrographic Basin. The following methods were used to arrive at the estimated use:

- Where totalizing meters were in place, meter readings were taken and compared with previous data (if available).
- Where meters were not in place and the use was irrigation, pumpage was estimated by multiplying the number of hours the well was operated during the past year (determined from an hour meter reading or asking the water user) by the certificated diversion rate.
- Where there were no flow meters or other reliable options for estimating pumpage and • the use was irrigation, pumpage was estimated by dividing the Net Irrigation Water Requirement (NIWR) for the crop grown by the efficiency of the irrigation method used, then multiplying by the number of acres irrigated. Irrigation efficiencies associated with three types of irrigation methods are: pivot at 85%; wheel line or other hand moved sprinklers at 75%; and flood at 60%. The pumpage amount estimated by this method was limited by the duty of the permit. For places where the groundwater rights are supplemental to surface water, groundwater use was estimated using the NIWR method above, but is adjusted based on available surface water for the year. Evapotranspiration NIWR data by basin can be found on the NDWR website and at: http://water.nv.gov/mapping/et/et_general.cfm. This approach using the NIWR to estimate pumpage was not used in previous inventories, and pumpage estimates for 2013 may differ significantly from estimates of previous years.
- Where lands are irrigated by both surface water and groundwater, the surface water supply for the irrigation season was considered in estimating groundwater pumpage.

JA1161 SE ROA 848

TABLES

Table 1. Diamond Valley historical irrigated acreage and pumpage data.

Year	2009	2010	2011	2012	2013
Acres Irrigated	24,435	24,608	24,357	25,234	25,252
Acre-Feet Pumped*	70,900	71,400	70,600	73,200	75,037

* The NIWR method to estimate pumpage was used starting in 2013; estimates may differ significantly from previous years. Annual pumpage data for 2009 through 2012 are revised from previous crop inventories per State Engineer's <u>Order 1264</u>.

FIGURES

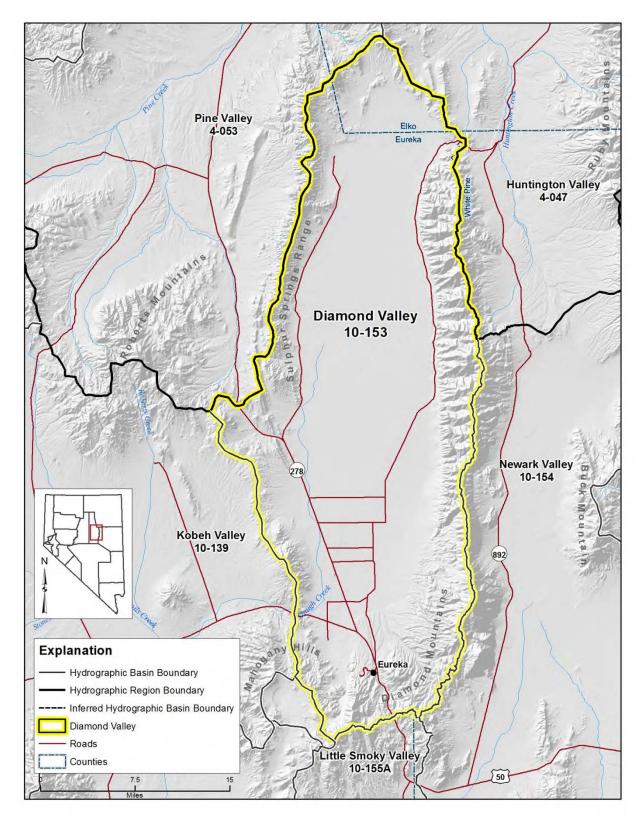


Figure 1. Physiographic map of Diamond Valley (Hydrographic Basin 10-153).

JA1163 SE ROA 850

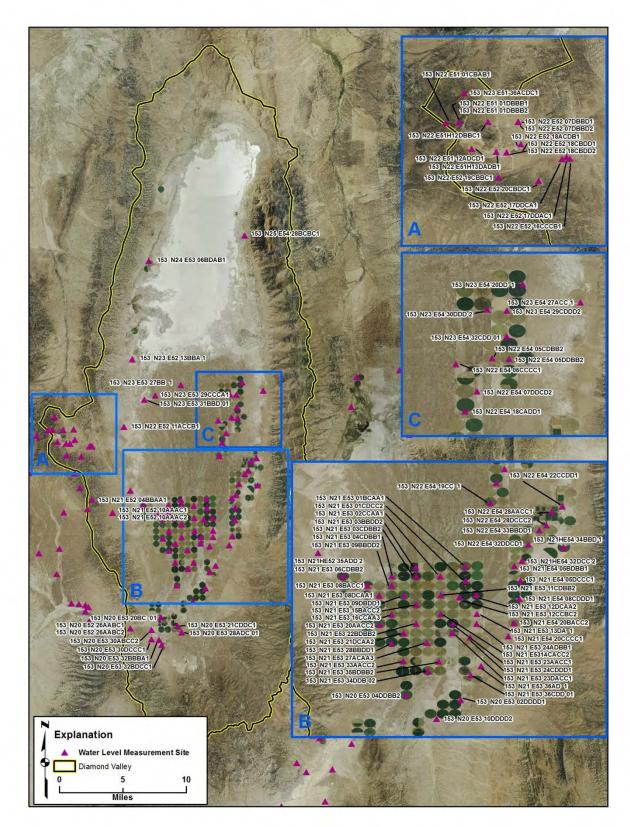


Figure 2. Map showing Diamond Valley irrigated acreage and water level monitoring sites.

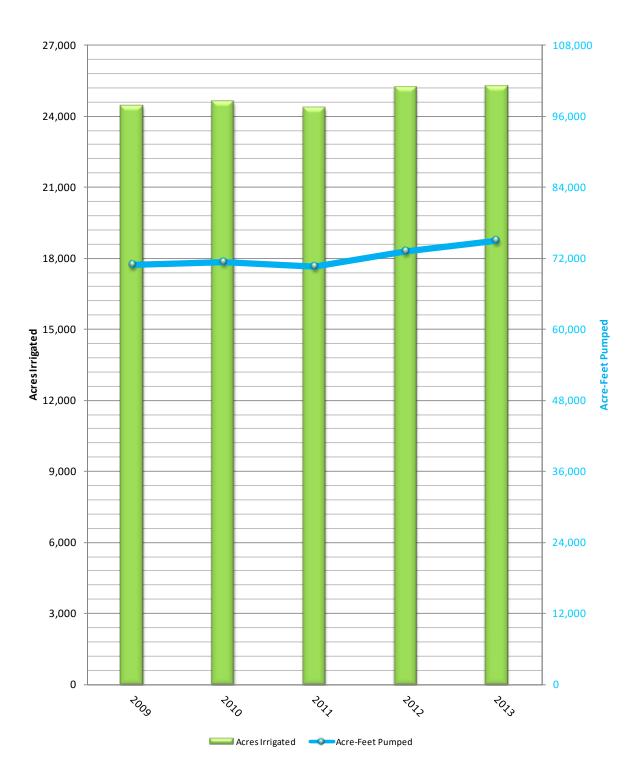


Figure 3. Graph showing Diamond Valley historical irrigated acreage and pumpage. The NIWR method to estimate pumpage was used starting in 2013; estimates may differ significantly from previous years. Annual pumpage data for 2009 through 2012 are revised from previous crop inventories per State Engineer's <u>Order 1264</u>.

JA1165 SE ROA 852 APPENDIX A. 2013 DIAMOND VALLEY CROP INVENTORY.

JA1166 SE ROA 853

EXPLANATION OF COLUMN HEADINGS

App No	The file number of the Application to Appropriate/Change Water or the Claim of Vested Right.
Status	Indicates the status of an application: Permit (PER), Certificated (CER), or a Claim of Vested Right (VST).
QQ Q Sec Twn Rng	The quarter-quarter of the Section in which the point of diversion is located. The quarter of the Section in which the point of diversion is located. The Section in which the point of diversion is located. The Township in which the point of diversion is located. The Range in which the point of diversion is located.
Sup	Indicates whether the groundwater right is part of a group of groundwater rights used to irrigate all or a portion of the same acreage (supplemental). A "Y" in this column signifies the groundwater right is supplemental to other groundwater rights.
Supplemental Application Number	The application number(s) of the water right(s) that are supplemental to one another.
Permitted Acres	The number of acres defined by the permit or certificate that is eligible to be irrigated.
Supple- mentally Adjusted Permitted Acres	The supplementally adjusted, total number of acres that is eligible to be irrigated under a supplemental group of water rights.
Permitted Duty Acre-Feet	The amount of water that may be pumped in a given year, or season, as defined by the permit, certificate, or claim of vested right. If there is a supplemental group, the total combined duty is listed as a supplementally adjusted duty.
Supple- mentally Adjusted Duty Acre-Feet	The supplementally adjusted, total combined duty that may be pumped in a given year, or season, for a supplemental group of water rights, expressed in acre-feet. The supplementally adjusted, total combined duty is listed at the end of a supplemental group in bold .
Owner of Record	The owner of the water right as recorded in the records of the State Engineer. A water right may have more than one owner of record. Only the first, alphabetically, is listed in this table.
Crop Type	Indicates whether or not a crop was in production during the water year. If a crop was in production, the common name description of the plants under cultivation if given (e.g. alfalfa).

Irrigation Method	The method by which the water is applied to the crop and ground (e.g. pivot).
Irrigated Acreage	The estimate of the number of acres irrigated associated with a particular water right. A "-" in this field indicates that pumpage was attributed to a senior supplemental permit or certificated water right.
Acreage Estimation Method	The method by which the number of acres irrigated was determined. F – Field inspection. I – Aerial or satellite imagery.
Acre-Feet Pumped	The estimate of the amount of water pumped under a particular water right, expressed in acre-feet. One acre-foot equals 325,851 gallons. A "-" in this field indicates that pumpage was attributed to a senior supplemental permit or certificated water right.
Pumpage Estimation	The method used to estimate the amount of water pumped. M – Totalizing meter readings. N – NIWR Method.

00 013 103
1200 1200 Matrix Monta Matrix Matrix Matrix Matrix Matrix Matrix Matrix Matrix Matrix Matrix <th< th=""></th<>
15.1 11.1 <th< td=""></th<>
10.0 10.3 0.0000 (MMM, MMM, MMM, MMM, MMM, MMM, MMM,
0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000
1300 1300 <th< td=""></th<>
14000 1300 </td
13000 0000 MOUND WITH FUNCTION CONFINING MATCH MO MOUND MATCH
4000 500 MORE BASIEL LANKY AI Field
6000 600 8000
Model Model <th< td=""></th<>
17363 17363 NAWON GRIEN. Aff Free 3400 1 7016 17404 1364 IULNOCONSYGUILAGUIRA RANGELL Gamb Free 2000 1 2000 1 2000 17406 1300 IULNOCONSYGUILAGUIRA RANGELL Gamb Free 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 2000 1 2000 1 2000 2000 1 2000
912 173 173 174
11/00 11/00 11/10 </td
3100 1300 <th< td=""></th<>
1300 Λ (MAC CONOUTIES, IAC M_{COLD} <t< td=""></t<>
37.3 1.31.0 SETVOM 1.31.0
1413.0 CONFRACTINITION 0.11 CONFRACTINITION 0.11 0.000 0.0
0000 00000 SETAWOPCHILM, & ACTUELLE No 150000 15000 15000<
600 600 STANDORLINA & CATLELIC Nat
6000 6400 CONR. CIMILSE AIT For 2533 6000 6400 CONR. CIMILSE AIT For 2753 12763 EVENTON DEBALL AIT For 2763 7 12763 NEWTON DEBALL AIT For 2 7 12763 NEWTON DEBALL AIT For 2 7 7 6000 5400 NEWTON DEBALL AIT For 2 7 7 6000 5400 NIES IMMOLD AIT For 5 7 7 7 6000 5400 NIES IMMOLD AIT For 5 7 7 6000 25600 WIES IMMOLD AIT For 5 7 7 5430 1346 For 5 7 7 7 7 5430 1346 For 5 7 7 7 7 7 7 7 7 7 7
0000 0000 <t< td=""></t<>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
55.3 62.00 MILE MINE GamM Mode 900 1 700 51.1 54.30 1.134.60 MILE MINE Gam/M For 900 1 900 51.1 54.30 1.134.60 MILE MINE MIC min Me For 1900 1 900 51.1 53.30 1.134.60 MILE MINE MIC min Me 100 100 1 903 23.13 53.00 53.00 DURE MINE MORT MIC min Me 100 1 903 13.14 63.00 S2.00 DURE MINE MORT MIC min Me 100 1 903 13.00 63.00 S2.00 DURE MORT MIC mo 100 1 903 13.00 63.00 MULE MORT MIC mo 100 1 903 13.00 93.00 MULE MORT MIC mo 100 1 903 13.00 93.00 MULE MORT MIC mo 100 1 903
6100 6400 12400 NORENON-JENEL Grant constance Form 12400 </td
3130 58,00 125,80 MARE WILMAA CRARE Aff For 1300 1300 15 960 125 960 125 960 126 960 126 960 126 960 126 960 126 960 126 160
12.12 12.30 32.00 DORMATINATA ALCANE ATI Point 0.200 1 0.402 12.90 52.00 25.00 DORMATINATA ALCANE ATI Point 0.200 1 0.402 12.90 52.00 25.00 DVA CORRENTINA ATI Point 12.00 1 0.402 15.80 62.00 52.00 SESTANOVICA ATI Point 12.00 1 34.41 15.80 62.00 52.00 NATLEDOVAL ATI Point 12.00 1 34.41 15.80 62.00 52.00 NATLEDOVAL ATI Point 12.00 1 34.41 15.80 90.00 90.00 90.00 90.00 1 34.41 15.80 90.00 90.00 90.00 90.00 1 34.41 15.90 90.00 90.00 90.00 1 90.41 34.41 15.90 90.00 90.00 90.00 90.00 1
139 59.20 DVA CORPORATION Aff From 12.00 1 33-34 158.00 52.00 57.00 57.00 57.00 57.00 1 34.7 158.00 52.00 57.00 57.00 57.00 57.00 1 34.7 158.00 52.00 57.00 57.00 57.00 1 36.7 158.00 57.00 57.00 57.00 1 1 34.7 158.00 57.00 57.00 57.00 1 56.0 1 36.7 158.00 57.00 57.00 57.00 1 1 36.7 170.00 57.00 57.00 1 1 1 1 1 1 1 1 1 36.7 170.00 57.00 10.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5.00 6.200 527AOVCHIENC AIT FOOD 7500 1 7573 15500 6.200 6200 FICHEOAAVLIENOW AIT FOOD 7500 1 7564 15500 6200 FICHEOAAVLIENOW AIT FOOD 7500 1 7564 15500 6200 FICHEOAAVLIENOW AIT FOOD 7500 1 7664 15500 6200 FICHEOAAVLIENOW AIT FOOD 7500 1 7664 15600 9000 9000 9001 FICHEOAAVLIENOW AIT FOOD 7500 1 7664 1600 9000 9001 HOMELDUSAVL AIT FOO 1 9604 2000 112600 12560 COULEDUSAVL AIT FOOD 1 900 1 7664 1610 12560 12560 COULEDUSAVL AIT FOOD 1 900 1 7664 1610 12560 12560
15300 62000 63000 FICHEGARAVL LROV W. AIF Front 12300 1 3656 14300 9732 125600 MOYLE, DUSTYL. AIF Front 12360 1 3676 14400 9732 62300 MOYLE, DUSTYL. AIF Front 22760 1 3675 15800 62300 MOYLE, DUSTYL. AIF Front 2260 1 3675 24000 6230 MOYLE, DUSTYL. AIF Front 1260 1 3675 3400 MOYLE, DUSTYL AIF Front 1260 1 3675 3400 MOHE, DUSTYL AIK Front 1260 1 3675 3400 13460 15560 CONLEY AND CONLEY, KENNETH AIK Front 3600 1 3675 34400 12560 12560 CONLEY AND CONLEY, KENNETH AIK Front 3600 1 3675 34400 12560 12560 CONLEY AND CONLEY, KENNE
13.00 09.00 00.01LE DUSTYL. AII From 12.00 09.00 00.01LE DUSTYL. AII From 12.00 1 09.01 31.00 62.00 62.00 MOTLE DUSTYL. AII From 12.00 1 69.03 31.00 62.00 90.00 MOTLE DUSTYL. AII From 16.00 1 69.03 31.00 93.00 MOTLE DUSTYL. AII From 16.00 1 65.00 31.00 52.30 60.01 L.55.00 CONLEY, BEVRLY A.AD COMEAY OF CALIFORM AII From 16.00 1 65.00 31.400 12.56.00 CONLEY, BEVRLY A.AD COMEAY OF CALIFORM AII From 16.00 1 65.00 31.400 12.56.00 CONLEY, LEVERLY A.AD COMEAY OF CALIFORM AII From 16.00 1 25.50 31.400 12.56.00 CONLEY LADO & LIVENOCK.LLC AII From 13.00 1 25.64 31.00 12.66.00 12.66.00
15800 62.00 63.200 MOVLE, DUSTVL. Aff Foot 156.00 1 37.39 3400 96.00 MOVLE, DUSTVL. Aff Foot 16.00 1 37.39 3400 96.00 MOVLE, DUSTVL. Aff Foot 16.00 1 48.29 3400 134.00 125.60 CONLEY, BUVERLY, AND CONLEY, KENNETHE. Met Lines 0.00 1 23.39 134.00 125.60 125.60 CONLEY, BUVERLY, AND CONLEY, KENNETHE. Met Lines 0.00 1 23.59 134.00 125.60 CONLEY LADO & LIVESTOCK, LLC Grant Poot 23.00 1 23.64 106.10 66.40 CONLEY LADO & LIVESTOCK, LLC Grant Poot 13.00 1 23.64 201.00 12.64.00 12.64.00 None Poot 23.00 1 23.64 201.01 12.66.00 66.40 CONLEY LADO & LIVESTOCK, LLC Grant Poot 13.00 1 26.44 201.01
24000 96.00 MOTLE DUENTL. AIF Foot 165.00 1 485.30 95.00 384.00 384.00 MONE TAKE MINING COMPANY OF CALIFORNIA AIF Foot 165.00 1 485.30 173.07 62.38 50.24.41.05 LLC Nene MacLines 0.00 1 235.30 173.07 62.34 50.32 SOLALIOS LLC AIF Foot 23.00 1 235.30 166.10 1256.00 CONLEY LEND & LIVENDCALLC AIF Foot 23.00 1 26.47 166.10 13.00 129.40 RVILEY LAND & LIVENDCALLC AIF Foot 13.00 1 75.47 2010 13.00 129.40 RVILEY LAND & LIVENDCALLC AIF Foot 13.00 1 75.47 2011 13.01 129.40 RVILEY LAND & LIVENDCALLC AIF Foot 13.00 1 73.43 2012 13.02 66.30 BAUNALLEY RANCH LLC AIF Foot 10 74.13
960 3440 HOMETAKE INTING COMPAY OF CALIFORIA AIT Prot 8000 I 2353 17307 62.23 69.23 SOLARLJOSLLC Name Med Lins 000 I 2500 12.5500 CONLEY AND CONLEY KENNETHE. Hy Not 252.00 I 256.47 14.00 664.40 664.40 CONLEY AND CUNEY KENNETHE. Hy Not 252.00 I 756.47 16.14 657.92 657.92 679.49 Kent Not 253.00 I 756.47 20.10 1.246.00 CONLEY LAND & LIVESTOCK.LLC GrasHy Poot 130.00 I 70.64 20.10 1.246.00 BAUMAN JAMEE. GrasHy Poot 253.00 I 716.47 20.10 1.266.00 10.00 AIF Poot 253.00 I 70.64 20.117.00 1.296.40 BAUMAN JAMEE. GrasHy Poot 253.00 I 70.16 20.117.00 1.276.40 BAUMAN JAMEE.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
H130 56.20 DIAMOND VALLEY KANCH, LLC Aff Prot 123.00 1 361.76 117.30 48.00 JAMOND VALLEY KANCH, LLC Aff Prot 126.00 1 361.76 319.70 1.2794.80 L38.40 DIAMOND VALLEY KANCH, LLC Aff Prot 156.00 1 711.83 319.00 1.2794.80 1278.44 DIAMOND VALLEY KANCH, LLC Aff Prot 22.00 1 711.63 319.00 1.276.40 1178.14 DIAMOND VALLEY KANCH, LLC Aff Prot 126.00 1 711.63 316.00 652.00 1.278.44 DIAMOND VALLEY KANCH, LLC Aff Prot 126.00 1 711.63 320.00 652.00 1.278.44 DIAMOND VALLEY MANCH, LLC Aff Prot 129.00 1 711.63 320.01 652.00 652.00 RAND, ELLIN M Aff Prot 129.00 1 376.47 77.16 77.16 Prot 129.00 1 376.47
468.00 IAMOND VALLEY RANCH, LLC Aff Proof 116.00 1 34.18 1.279.48 PLASERT: TOWNELL Granklay Proof 22.00 1 74.14 1.276.46 1.276.46 BURNHAIR-TANCH, LLC Granklay Proof 22.00 1 74.18 1.276.60 1.286.46 BURNHAIR-TANCH, LLC Aff Proof 24.00 1 71.45 0.32.00 1.286.40 BURNHAIR-TANSE, LLC Aff Proof 24.00 1 71.45 0.32.00 6.32.00 RAND, BURNHAIR-TANSE, LLC Aff Proof 120.00 1 37.35 0.32.00 6.32.00 RAND, BURNHAIR-TANDELLENM Aff Proof 120.00 1 37.35 779.16 RAND, BLIENM Aff Proof 128.00 1 37.647 779.12 1.281.32 PLASKETT, TOMMYE J Aff Proof 25.100 1 77.55 7.81.32 PLASKETT, TOMMYE J Hay Proof 25.100 1
127948 1.27948 PLASETT TOMMYE1 GrassHay Prot 22.00 1 74.18 1.27640 1.27840 BURNIAMI RAIS, LLC Aff Prot 244.00 1 74.18 0.23.00 6.23.00 BURNIAMI FAUS, LLC Aff Prot 126.00 1 74.18 6.23.00 6.24.00 RAND, JOSFFH LAND FLLEN Aff Prot 128.00 1 37.95 6.23.00 RAND, JOSFFH LAND FLLEN Aff Prot 128.00 1 37.35 73.16 6.24.00 RAND, ELLEN Aff Prot 128.00 1 37.64 73.16 6.24.00 RAND, ELLEN Aff Prot 128.00 1 37.64 79.16 Aff Prot 128.00 1 37.64 -
1,2%100 1,2%10 Exercise All Proof 1,2%10 1,1/1,30 0,32,00 6,32,00 6,32,00 1,081/H 1,081/H 1 37,39 632,00 6,32,00 6,32,00 RAND,JOSEPH LAND ELLEN M. Alf Proot 126,00 1 37,33 218,30 634,00 RAND,JOSEPH LAND ELLEN M. Alf Proot 128,00 1 37,64 7/2016 FLAKETT, TOMMVE J. Grass Hay Proot 128,00 1 37,647 7/2016 LLAKETT, TOMMVE J. Grass Hay Proot 128,00 1 37,647 7/2012 L281,32 PLAKETT, TOMMVE J. Alf, Grass Proot 251,00 1 72,353 1,281,32 PLAKETT, TOMMVE J. Hig Proot 2 7 7 1,281,32 PLAKETT, TOMMVE J. Hig Proot 7 7 7 1,281,32 PLAKETT, TOMMVE J. Hig Proot 5 7 7 7
CU0 1.106.14 DATMOND VALUE RAVELLUC AII Proof 1.2000 1 3.70.39 0.62.00 6.24.00 R.AND, DELLENM AII Proof 130.00 1 3.647 779.16 PLASKETT, FOMMYEJ. AII Proof 130.00 1 3.647 779.16 PLASKETT, FOMMYEJ. AII Proof 128.00 1 3.647 779.16 PLASKETT, FOMMYEJ. AII Proof 2.51.00 1 3.647 779.16 PLASKETT, FOMMYEJ. AII Proof 2.51.00 1 3.647 738.13 PLASKETT, TOMMYEJ. AII Grass Proof 2.51.00 1 7.23.53 1.281.32 PLASKETT, TOMMYEJ. Hay Proof 2.51.00 1 7.23.53 1.281.32 PLASKETT, TOMMYEJ. Hay Proof 2.51.00 1 7.23.53 1.281.32 PLASKETT, TOMMYE Hay Proof 2.51.00 1 7.23.53
156.00 218.20 6.34.00 RAND, ELLEN M. AIF Fiver 128.00 1 376.47 79.16 PLASRETT, TOMMYE J. Cass Hay Proot 128.00 1 376.47 73.03 1281.32 PLASRETT, TOMMYE J. AIF. Gass Proot 251.00 1 723.53 1281.32 PLASRETT, TOMMYE J. AIF. Gass Proot 251.00 1 723.53 1281.32 PLASRETT, TOMMYE J. Hay Proot 251.00 1 723.53 1281.32 PLASKETT, TOMAYE J. Hay Proot 251.00 1 723.53
79.16 PLASKETT, TOMMYE.I. Grass Hay Fvot F 320.33 1281.32 1281.32 PLASKETT, TOMMYE.I. Hay Prot 251.00 1 723.53 1281.32 1281.32 PLASKETT, TOMMYE.I. Hay Prot 251.00 1 723.53 1281.32 PLASKETT, TOMMYE.I. Hay Prot 251.00 1 723.53 1281.32 PLASKETT, TOMMYE.I. Hay Prot 251.00 1 723.53
320.33 1.281.32 1.281.32 PLASKETT, TOMMYE.L. HJ, HJ, Provi 251.00 I 723.53 1.281.32 PLASKETT, TOMMYE. HJ, Provi - F -
1281.32 PLASKETT, TOMAYE HAy Prot - F -
1281.32 PLASKETT, TOMAYE Hay Prot F

SE ROA 856

	Pumpage Estimation Method	N	z	z	zz	z	N	z	z	z	2	zz	z	z z	z	z	z	z z	z	z	z	z	z	z	z	N	z	Z	z ;	K N	z	z;	zz	z	zz	z	zz	z	z	z z	z	z	Z	z	z
	Acre-Feet Pumped	:	1	367.65	355.76 370 50	378.35	367.65	188.24	185.29	355.76	00.001	67 68 1	375.53	385.29	367.65	361.76	355.76	382.35 370.59	373.53	369.88	258.82	355.88 Ma Patimete	370.59	1	352.94	361.76	856.27	;	367.06	00.141	352.94	361.41		1		376.47	96.47 772.47	1	747.06		476.52	452.40	495.08		352.94
	Acreage Estimation Method	F	ы	I			П	-	-	-				4 I	-	I			I	1	-	-	-	н	-	I	I	ы					- 4	F	ir ir			· 14		4 1	-	н	ы	ы	
	Irrigated Acres	:	1	125.00	126.00	134.00	125.00	64.00	63.00	126.00	00.00	02:00	133.00		125.00	123.00	126.00	130.00 126.00	127.00	131.00	88.00	121.00 Ma Fatimata	126.00	1	120.00	123.00	271.00	;	130.00	00.740	120.00	128.00	1/4.90	:	: :	128.00	52.80 268.00	- 1100	254.00		489.00	ı	:		120.00
	Irrigation Method	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot		Pivot	Pivot	Pivot Pivot	Pivot	Pivot	Pivot 	Pivot Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot, Wheel Lines	Pivot, Wheel Lines	Pivot	Divot	Pivot	Pivot	Pivot	Pivot	Pivot Pivot	Pivot	Pivot	Pivot	Pivot	Pivot Pivot, Flood	Pivot	Pivot	Pivot	Pivot	Pivot
	Crop Type		Alf, Grass Hay l		Grass hay 1	s Mix		Pasture	AIF 1	Grass Hay	-		ss Hay	Alf I	Alf		ss Hay	Alf	Alf	Grass Hay		Alf	Alf	Grain	AIF	AIF 1	Alf	AIF	s Hay	Alf, Grass		ss Hay	Alf		Grass Hay] Grass Mix]		Alf							Grass	
Crop Inventory and Groundwater Pumpage for Irrigation - Diamond Valley - Basin 153, 2013	Owner of Record	MOYLE, DUSTY L.	A MOYLE, DUSTY L.		DIAMOND VALLEY RANCH, LLC G			EUREKA COUNTY P	MICHEL AND MARGARET ANN ETCHEVERRY FAMILY LIMITED PARTNERSHIP	MILLER, ANTHONY G	MICHEL AND MARGARET ANN ETCHEVERRY FAMILY			EUREKA MOLY LLC A A ALLEN, MAX D. A	MICHEL & MARGARET ETHCEVERRY FAMILY LP A			DIAMOND VALLEY RANCH, LLC A AMERICAN FIRST FEDERAL A	BAILEY, TIMOTHY LEE AND CONSTANCE MARIE A	BAILEY, TIMOTHY LEE AND CONSTANCE MARIE G		AMERICAN FIRST FEDERAL MADE MONTE FADMS 11 C			MILLER, LAVON AND KRISTI	MILLER, LAVON AND KRISTI	BENSON, KENNETH F.	BENSON, KENNETH F.	NETH F.	AMERIANI FIKST FEDERAL A DIEDRIJAM EADMS TTC			EUREKA MOLLY, LLC A EUREKA MOLLY, LLC A		MILLER, ANTHONY G MILES, HAROLD R. G	-				MORRISION, ALBERTA J. A ANDERSON, EDWARD B. A	A DIAMOND VALLEY HAY CO.	A DIAMOND VALLEY HAY CO.	A DIAMOND VALLEY HAY CO.		
or Irrigation - Di	Supplementally Adjusted Duty Acre-Feet			640.00	1,232.00	638.31	510.80	292.00	1,013.16	1,310.40		640.00	624.00	632.00	632.00	624.00	632.00	630.40 635.20	536.00	622.00	654.28	628.80	632.00		468.00	468.00	1,186.88		646.36	1,270.00	1,280.00	10.00	907.70			544.00	44.40 1.280.00		1,240.80		1,888.00				640.00
vater Pumpage fe	Permitted Duty Acre-Feet		632.00	640.00	624.00	638.31	510.80	292.00	688.88	625.60	21 6101	640.00	624.00	519.68 632.00	632.00	624.00	632.00	630.40 635.20	536.00	622.00	654.28	628.80	632.00	726.76	468.00	468.00	1,186.88	1,186.88	646.36	00/02/1	640.00	1,216.00	902.76 902.76	902.76	684.80 306.00	544.00	44.40	1,280.00	1,240.80	1,240.80 624.99	476.52	452.40	928.92	944,00	640.00
ory and Groundy	Supplementally Adjusted Permitted Acres			160.00	308.00	159.58	127.70	73.00	253.29	327.60		160.00	156.00	158.00	158.00	156.00	158.00	157.60 158.80	134.00	155.50	163.57	157.20	158.00		117.00	117.00	296.72		161.59	02:010	320.00	00 J.W	60'077			136.00	320.00		310.20		472.00				160.00
Crop Invent	Permitted Acres	156.00	158.00	160.00	156.00	159.58	127.70	73.00	172.22	156.40	00 000	67:527	156.00	129.92 158.00	158.00	156.00	158.00	157.60 158.80	134.00	155.50	163.57	32.20	158.00	181.69	117.00	117.00	296.72	296.72	161.59	02.010	160.00	304.00	225.69	225.69	171.20 76.50	136.00	320.00	320.00	310.20	310.20 156.25	472.00	472.00	472.00	236.00	160.00
	Supplemental Application Number	2	19492		24607 24606	00047			21399	23462, 23803	10000	70074		19218, 24378										18623			22921	22648	36321, 36322	92606	28641	21085, 23803	23711,23739	23711, 23738	21085, 23462 19111		24128	24127	24130	24129 19191	4	4	-	4	
	Sup		γ		۲ ×	-			٨	Y	;			Y										Y			Υ	Υ	Y	>	. ,	¥÷	Y	Y	× ×		Å	• •	Υ:	Y	Y	Y	Y	~	
	Rne	53E	53E	54E	53E 53E	54E	53E	53E	53E	53E		53F	53E	53E 53E	53E	53E	53E	53E 53E	53E	53E	53E	53E 54E	54E	53E	53E	53E	53E	53E	53E	305	54E	53E	53E	53E	53E 54E	546	53E	53E	53E	53E 53E	53E	53E	53E	53E	54E
	Twn	21N	21N	22N	21N	22N	21N	20N	20N	21N	1406	21N	21N	20N 21N	21N	21N	21N	21N 21N	21N	21N	20N	21N	22N	21N	21N	21N	21N	21N	21N	NIL2	22N	21N	20N	20N	21N 22N	21N	21NN	21N	21N	21N 20N	21N	21N	21N	21N	21N
	Sec	34	34	33	20	52	22	32	21	35	ç	77	П	21 16	21	15	15	28 27	3	3	20	27	19	36	×	~	3	3	5 5	77 57	32	35	28	28	35	- v 8	cč 10	10	10	10	6	6	6	6	~ ~~
	0	NE	SW	NW	NE	MN	MW	ΜN	NE	MN		SF	NE	NW SW	MN	SW	MN	NE	SW	SE	NE	SE	RE BR	SW	SE	NE	NE	MN	LT01	an a	MS	LT01	ws SW	LT07	SW	SW	NE	SE	MM	SW NW	NW	NE	SE	SW	SW
	8	NW	MN	SE	SE	SE	NE	SE	SE	SE	111-2	w s	SE	SW	SE	SW	SW	SW SW	SE	SE	SE	SW SW	SW	SE	SW	SW	SW	SW	1110	aw a	SW		NW		SW	NE	ws SW	SW	SW	SW SW	SW	MN	SW	SW	SE
	Status	CER	CER	CER	CER	CER	CER	CER	CER	CER	and a	CER	CER	CER CER	CER	CER	CER	CER CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CEP CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER
	App No	20000	20015	20046	20087	20366	20487	20565	20694	21085	00000	21426	21428	21561 21839	21841	21843	21844	21929 21930	22194	22195	22217	22316	22353	22551	22566	22567	22648	22921	22922	70677	23272	23462	23738	23739	23803 23893	23808	23918 24127	24128	24129	24130 24214	24262	24263	24264		24272

JA1170

SE ROA 857

Pumpage Estimation Method	z	z	z	Z	z	z	zz	z	Z	z	z	zz	s z	2	z	z	Z	zz	z	z	z	z	zz	z	z	z	z z	z	z	z z	z	5	z	Z	z	z z	zz	z	z z	zz	z	z	z	ZZ	z	ZZ	Z Z	z	N :	zz	z	N	zz	z	
Acre-Feet Pumped	113.24	364.71	65.88	370.59	370.59	- 000	308.82	97.06	350.12	148.21	203.68		364.71	0.026	28.86	:	385.29	364.71 364.71	1.105.88	364.71		373.53	298.53	376.47	370.59	361.76	370.59 91.18	364.71	358.82	373.53 330.09	173 54	00000	358.82	370.59	:	367.65	350.12	350.12	350.12	355.88	352.94		:	367.65	70.000	364.71 64.71	04./I 259.76	3.20	:		723.53	379.41	: :	281.65	
Acreage Estimation Method	1	I	-	I	-	in 1			I	-		- 1		-	-	н	F				Ł			-	I	I					• -		-	I	н	- 4		-			-	ы	-		-			ii.	4	L. L.	-	Ι	(a. (a		
Irrigated Acres	38.50	124.00	22.40	126.00	126.00	- 000	0.00	33.00	124.00	50.39	69.25		124.00	00 001	00'771	;	131.00	124.00	376.00	124.00	:	127.00		128.00	126.00	123.00	31.00	124.00	122.00	127.00	127.00	000144	122.00	126.00	:	125.00	124.00	124.00	124.00	121.00	120.00	;	:	125.00	122.00	124.00 22.00	92.00	1:00	;		246.00	129.00	: :	114.00	
Irrigation Method	ivot	Pivot	Pivot	Pivot	ivot	Pivot	None	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	1	FIVOL	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot B' :	Pivot	Pivot	Pivot	Pivot	Pivot Pivot	Pivot	Pivot	Pivot Pivot	Pivot	5	Pivot	Pivot	Pivot	Pivot Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	IIVOL	Pivot	Pivot	Sprikler	Pivot	Pivot Pivot	Pivot	Pivot	Pivot Pivot	Pivot	
Crop Type				Alf P.			Grain Grass P		Grass Hay P			Grass Hav D						Alf Grain P			Alf P									Alf P.			Alf P				ss Hay		s Hay	Alf P		Alf, Grass Hay P	Grain	Alf P.		Alf P Alf D	ss Hay			Grass Hay P Grass Hav P			Alf P Alf D		
Owner of Record	COUNTY OF EUREKA	OYD		CH, LLC		DIAMOND VALLEY RANCH, LLC	IDV B		/ TRUST				BLEHM, RONALD W.		BUKNHAM FAKMS, LLC	5		MOYLE, JAMES L. & N. JANE Hat din sandiet		VTES		MOYLE, DUSTY L.		4 M.			MOYLE, DENISE L. AND HICKS, DEANNE M. A MOYLE DENISE L. AND HICKS, DEANNE M. A		AND HICKS, DEANNE M.		MARTIN P. & KATHLEEN A. ETCHEVERRY TRUST & ETCHEVERRY MARK T. & IRNNIER		MARTIN P. & KATHLEEN A. ETCHEVERRY TRUST & ETCHEVERRY, MARK T. & JENNIFER			WISEHART, LARRY WISEHART I ARRY	E K. AND DAVID M.	AVID M.		MORRISON, CHERYL A.		PLASKETT, TOMMYE J.	CATTLE LLC			MICHEL & MARGARET ETHCEVERRY FAMILY LP	M.			BENSON, PATTI E. AND KENNETH F. C. C. BENSON, PATTI E. AND KENNETH F. C. C.				MILLER, LYNFORD & SUSAN	
Supplementally Adjusted Duty Acre-Feet		680.68				404 00	508.80	160.00	504.48	478.56			520.00				591.32	487.36		502.64		477.80	+0.20c	553.68	523.20	541.44	541.44	533.60	537.60	520.00 563.20	480.00	00001	480.00	1,223.74		1,264.70	511.60	510.80	516.01	948.40	520.00			640.00 511.60	00'11c	546.64 1.08 44	387.04	4.00			1,250.24	552.12		502.64	
Permitted Duty Acre-Feet Ac	298.80	680.68	316.00	1,232.00	1,232.00	1,108.14	402.00 508.80	160.00	504.48	201.56	277.00	007.20C	520.00	00.00	040.00	480.00	591.32	487.36 1 252 80	1.280.00	502.64	890.27	477.80	502.64	553.68	523.20	541.44	541.44 158.00	533.60	537.60	520.00 512.12	480.00	00001	480.00	1,223.74	1,223.74	1,264.70	511.60	510.80	516.01	501.82	520.00	505.60	502.72	640.00 511.60	00'11c	546.64 108 44	387.04	4.00	640.00	304.01 323.18	1,250.24	552.12	543.24 552 12	458.64	
Supplementally Adjusted Permitted Acres		170.17				100.60	127.20	40.00	126.12	119.64			130.00				147.83	121.84		125.66		119.45	00.021	138.42	130.80	135.36	135.36	133.40	134.40	130.00 140.80	120.00	00000	120.00	305.94		316.18	127.90	127.70	129.00	237.10	130.00			160.00	061/21	136.66 27.11	96.76	1.00			312.56	138.03		125.66	
Permitted / Acres	74.70	170.17	79.00	308.00	308.00	280.80	127.20	40.00	126.12	50.39	69.25	125.08	130.00	1 40 00	100.00	120.00	147.83	313.20	320,00	125.66	320.00	119.45	125.66	138.42	130.80	135.36	135.36 39.50	133.40	134.40	130.00 128.03	120.00	000041	120.00	305.94	305.94	316.18 316.18	127.90	127.70	129.00	237.10	130.00	126.40	125.68	160.00	06'/71	136.66 27.11	96.76	1.00	160.00	161.59 161.59	312.56	138.03	135.81	114.66	
Supplemental Application Number	19218, 21561		2	20088	20087	19904, 78905				28036	28035	10/61	1/661 (00001		7/797	23271		10107	1		-	00000	30927				18794			81004				33669	33668	33671 33670	0/000			48225,48226	48437	m	18975							22922, 36322 22922, 36321	55535	39554	18981 30552	40013	
Sup			Y	γ	Y	Y				Y	Y	- >	-	>	ł	Y		^	• >		Y	2	* *				>			Y				Y	Y	Y	-			γ	Y	Y	Y						Υ :	× ×	Y	Y	> >	Y	
Rng	53E	53E	53E	53E	53E	53E 23E	54F	53E	53E	53E	53E 54E	53F	54E	0173	24E	54E	53E	54E 53F	54E	54E	54E	54E	24E 54E	53E	53E	53E	53E 53F	53E	53E	53E 53E	53F	100	53E	54E	54E	54E 54F	24E 53E	53E	54E 54E	53E	54E	53E	53E	53E 53E	ICC	53E 53E	23E	53E	54E	53E 53E	54E	53E	53E 53F	54E	
Twn	20N	21N	21N	21N	21N	21N	NI17	21N	21N	21N	21N	NI2	22N	INCO	N77	22N	21N	23N	23N	22N	23N	23N	N22	21N	21N	21N	21N	21N	21N	20N 20N	NIC		21N	21N	21N	21N	21N	21N	N22	21N	22N	21N	20N	21N	NIT7	21N 21N	21N	20N	23N	21N 21N	22N	21N	21N	21HN	
Sec	21	8	34	20	20	29	cc 08	24	2	9	9	• -	33	ę	32	32	~	20	32	33	32	29	33	12	12	14	14 73	=	= :	= =	91	2	16	20	20	20	27	27	19	-	22	-	=	16	77	21	. L	29	32	7 7	5	4	4 4	32	
ð	LT04	SW	NE	SW	SE	B	SF	NE	SE	SE	SE	1 TO3	SW	ANN A	NW	NE	NW	SE	SW	RE	MN	BE E	SE	SW	NW	MN	SW	MN	SW	SW	, HN	2	SE	NE	SE	SW	MN	SW	SW	NE	SW	SW	NE	WN	MC	SW	SE	LT16	SE	LT01 LT01	NE	SW	SE	NE	
8		SW	ΝM	MN	SE	SE	SF	SE	NE	SW	SW	MN	NE	cur	9W	MN	NE	SE	SE	SW	SE	SW	SE	SW	SE	NE	NE	NE	NE	SE	HS	3	SW	NW	SE	SW	NE	SW	SE	SE	SE	NE	SE	SW		SE	SE		SE		SE	SE	SF	SE	
Status	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	830	CEK	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CEN	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CEK	CER	CER	CER	CER	CER	CER	CER	CER	CER	
App No	24378	24574	24605	24606	24607	24609	10107	26664	27976	28035	28036	10/07	28561	10200	28041	29278	29405	29557	29873	29895	30102	30913	30928	31062	31063	31108	31110	31113	31114	31454 31455	33018	0.000	33019	33668	33669	33670 33671	33817	33818	34561	34596	34939	34948	34950	35009	71000	35013	35375	35418	36070	36321 36322		39552 J	39553 39553 A		

SE ROA 858

Estimation Method	N	z	Z	z	z	z	z	N	z	z	z		z ;	z	z	;	z ;	z	z	;	z	z	ž	5	z	z	Z	c N	z z	z	z	z	N	z	z	z	zz	z	z	z	z	z	z	z	zž	z z	z	z	zz	;	z	z	z	zz	z	z	Z	z z	z	z	:
Acre-Feet Pumped	80.59	27.18	246.07	311.12	88.53	:	:	:	:	40.00	40.00	00.001	120.00	120.00	141.77	000000	00.062	76.80	470.59	00 202	525.62	525.62	130.11	11/624	;	367.65	;	00111	96 111	96.78		576.58	727.59	137.36	137.36	18.88	(0.4/	:	:	321.18	1	355.76	370.59	747.06	504.24		311.29	319.06		000000	00067	297.50	355.88	361.76 364.24	0.00	0.00	370.59	249.66 441.52		0:00	
Estimation Method	I	1	I	-	-	<u>1</u>	F	F	н	-	ц		-	ł	-			-	F		-	ы	Ľ	-	4	н	1			. (r	. 14	-	F	-	ш. I	-		. LL	I	I	1		-			- 12-	F		- 1-		-	ы			- i-	F	-		- 64	- 14	,
Irrigated Acres	27.40	11.00	09.66	129.00	30.10	;	;	;	;	122.00	;			;	111.28	0000	00.062	135.00	;	00.015	512.00	;			;	125.00	1	:			;	313.00	;	125.00	:		:	:	:	130.00	;	126.00	126.00	254.00	:		126.00	113.00		00.000	200.00	;	121.00	123.00	0.00	0.00	126.00	235.00		0.00	
Irrigation Method	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Divise	Pivot	Pivot	Pivot	i	Pivot	Pivot	Pivot	R	Pivot	Pivot	Direct	LIVUL	Pivot	Pivot	Direct	Direct	Pivot	Pivot	Pivot	Flood	Flood	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Piovt	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	i	PIVOL	Pivot	Pivot	Pivot Pivot	None	None	Pivot	Pivot	Pivot	None	
Crop Type	Alf	Grain	Grain	Wheat	Alf	Alf	Alf	Alf	Alf	Alf	Alf	AIF	AII 212	Alf	Alf	Alf, Grass	Hay	Alf	AII, UTASS Hay	Alf, Grass	Hay Alf Grass	Hay	Alf, Grass	Alf Grass	Hay	Alf	Alf. Grass Hav	4.16 A.16	Alf	Alf	Alf	Alf	Alf	Alf	Alf	Alf	Alf	Alf	Alf	Grain	Alf, Grass Hav	Grass Hay	Alf	Alf	Alf	Alf	Grain	Grass Hay	orass nay Alf	Alf, Grass	Hay A.F. G.moo	Hay	Alf	Alf Grace Hav	None	None	Alf	Alf	Alf	None	
	BURNHAM FARMS, LLC	MILLER, LYNFORD & SUSAN	BLEHM, GLADYS A.	MOYLE, DUSTY L.	MILLER, OWEN J. AND CHERYL	MILLER, OWEN J. AND CHERYL	COOPER, CHARLES C.	COOPER, CHARLES C.	COOPER, CHARLES E.	KEPHART, MARI ALICE	KEPHART, MARI ALICE	VEDIA DT MA DI ALICE	KEPHAKI, MAKI ALICE	KEPHART, MARI ALICE	MOLL, HOLLON D. & VELMA M.	A MODEL OF A DESCRIPTION OF A DESCRIPTIO	KENNETH P. STENTON	BLANCO KANCH, LLC	KENNETH P. STENTON		BERG PROPERTIES CALIFORNIA, LLC	BERG PROPERTIES CALIFORNIA, LLC		BENU FROFENTES CALIFONNIA, ELC	BERG PROPERTIES CALIFORNIA, LLC	MOYLE, JAMES L. & N. JANE	K ENNETH D. STENTON	BEANCO BANCH ITC	BLANCO RANCH, LLC BLANCO RANCH LLC	BLANCO RANCH LLC	BLANCO RANCH, LLC	PALMORE, DONALD FRANK	PALMORE, DONALD FRANK	BURNHAM FARMS, LLC	BURNHAM FARMS, LLC	BURNHAM FARMS, LLC	BURNHAM FARMS, LLC BURNHAM FARMS, LLC	BURNHAM FARMS, LLC	ALLEN, ROGER & JUDY	GROTH, DANIEL E	PLASKETT, TOMMYEJ.	MOYLE, DUSTY L.	BURNHAM FARMS, LLC	ANDERSON, EDWARD B.	ANDEKSON, EDWAKD B.	ANDERSON, EDWARD B.	ALLEN, ROGER B. & JUDY B.	MORISON, CHERYL A.	MOKINGON, CHEKTLA. MOYLE, MARK STEPHEN	GALLAGHER FARMS, LLC; A NEVADA LIMITED	LIABILITY COMPANY GALLAGHED BADMS 11 C. A NEVADA I MITED	LIABILITY COMPANY	BAILEY, CAROLYN	MOYLE, DUSTY L. MOYLE DISTY I.	DUBRAY, FERNOL, & CARRIE M.	DUBRAY, FERNO L. & CARRIE M.	MOYLE, DUSTY L.	SADLER RANCH, LLC SADLER PANCH 11C	MOYLE, JAMES L.	KOBEH VALLEY RANCH LLC	
Supplementally Adjusted Duty Acre-Feet	501.59			508.80	156.80					480.00					430.44	. 000 000	1,000.00	520.00		000000	2,080.00					640.00						1,213.60		502.80						632.00		576.00	510.40	1,270.16			508.80			0000	0/728		499.12	502.72 507 77	118.52		508.80	1,100.04		473.20	
uty.	108.59	44.00	393.04	508.80	156.80	156.80	455.24	88.00	548.80	40.00	40.00	120.00	120.00	120.00	141.77	01 000	01.28/	76.80	629.38		525.62	525.62	51430	60410	514.39	640.00	1 000 00	111.00	00 111	001	109.62	576.58	640.00	137.36	137.36	18.88	00.001	120.00	825.16	632.00	525.12	576.00	510.40	504.24	2/8.40	168.24	508.80	482.30 200.00	272.80	000,000	00067	327.10	478.56	502.72	118.52	118.52	508.80	249.66 1 100.04	640.00	129.20	
nitted	125.66			127.20	39.20					120.00					107.61	00000	00.062	130.00		00.000	520.00					160.00						303.40		125.70						158.00		144.00	127.60	317.54			127.20				213.20		124.78	125.68	29,63		127.20	275.01		118.30	
Permitted Acres	27.40	11.00	98.26	127.20	39.20	39.20	121.90	121.90	137.20	120.00	120.00	120.00	120.00	120.00	107.61	000000	250.00	130.00	250.00	00.000	520.00	520.00	00005	00/070	520.00	160.00	350.00	120.00	130.00	130.00	130,00	303.40	303.40	125.70	125.70	125.70	0/-07	125.70	206.29	158.00	131.28	144.00	127.60	317.54	317.54	317.54	127.20	120.58	00.021	00000	213.20	213.20	119.64	125.68	29,63	29.63	127.20	275.01 275.01	160.00	75.30	
Supplemental Application Number	40014	40010	40011		41884	41883	18978, 42020	18978, 42019	18999	5	5	\$			0	10000	452/0, 45850 7		43268, 43836	×		80	*		8		02756 93726	7	7	7	7	4452	44451	o :	× 0		6	6	18621, 18622		3			0 0	. 0	10		34596,48226	34939	=		=	55272		49854	49853		50582 50581	10,000	50963, 57838	
Sup A	Υ	Y	Y		Y	Y	Y	Y	Y	Y	Y	• >		Y	Y	;	, ;	Y	Υ	;	X	Y	>	-	Υ		^	- >	- >	- >	×	Y	Y	Y	Y	Y	* >	Y	Y		Y			Y	* *	- 7		×	- >	;	¥	Y	Y		λ	Y		Y	• •	Y	
Rng	54E	54E	54E	54E	53E	53E	53E	53E	53E	53E	53E	530	53E	53E	53E		24E	53E	54E		53E	53E	225	300	53E	54E	SAE	315	53E	53E	53E	54E	54E	54E	54E	54E	24E 54E	54E	53E	53E	53E	54E	54E	53E	53E	53E	54E	53E	54E		24E	54E	53E	54E 54E	53E	53E	54E	53E 53E	54E	52E	
Тwn	21HN	21HN	21HN	23N	20N	20N	21N	21N	21N	21N	21N	NIC	N17	21N	20N		N22	21N	22N		21N	21N	NIC	117	21N	23N	NLL	INIC	NI2	21N	21N	22N	22N	22N	22N	22N	N22	22N	21N	21N	21N	23N	21N	20N	20N	20N	23N	21N	22N		21N	21N	21N	23N	21N	21N	23N	24N	23N	23N	l
Sec	32	32	32	30	28	28	4	4	15	24	24	i c	24	24	-		8	18	18	5	17	17	5	-	17	20	81	9 9	9 8	8	81	28	28	27	27	27	17	27	36	2	-	29	*	29	67	29	30		22		4	4	9	62 90	67	7	30	9	32	13	J
ð	MM	NE	NW	MN	LT07	ETH	MN	NW	NE	MM	MN	NUV.	MN	MN	ΜN	-	NE	NE	SW		MN	NE	cu/	***	SE	SW	NE	NIC N	NE	NF N	RE	BE	MN	SW	SW	SW	SW S	SW	MN	SW	LT05	NW	ΝŴ	LT05	CU11	LT05	NE	MN	SW		NE	NE	SW	SW	ws.	LT08	SW	WN	MN	MN	
00	SW	SE	SW	SE			SE	SE	SW	SE	SE	8	SE	SE	SE		MN	MN	NE		MN	NW	c.m.		NW	SE	MM	NIM	MN	MN	MN	NE	SE	NE	NE	NE	NE	NE	SE	NW		SW	SW				SW	SE	SE	ŝ	SE	SE	SE	SE	SW		SE	SE	SW	ΝM	
Status	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	GEB	CEK	CER	CER	440	CEK	CER	CER		CER	CER	900	CEN	CER	CER	CED	CDB	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CEK	CER	CER	CER	CER	4440	CEK	CER	CER	CER	CER	CER	CER	CER	CER	CER	
App No	40011	40013	40014	40402	41883	41884	42019	42020	42021	42367	42368	072.04	42309	42370	42891	0.000	45208	43269	43270	1000	43271	43272	52058	01705	43274	43397	92824	0.00CF	43838	02024	43840	44451	44452	44604	44605	44606	4400/	44610	44621	46287	46348	46461	46505	47518	91C/4	47521	47591	48225	46220		488/1	48872	48948	49185	49853	49854	. 1	20581 50581			

SE ROA 859

Pumpage Estimation Method	N N	z	z	zz			z		Ņ	zz	z	z	N	2	z		z	N	z	Z	zZ	N	D	C		D	D	z	z z	N	z	X	z	z	zz	c z	z	z	z	z	: 2	N	z	z z	z	z
Acre-Feet Pumped	0.00 367.65	1		38.82	0.00	0.00	0.00	0.00	000	185 52	-	;		0.00 358 50	0.00		:		379.41	14.275		382.35	33.20	128.40		128.40	240.00	358.82	750.00 370.59	123.60	153.76	12 000	373.53	469.92	159.60		264.71	362.40	128.00	250.42		:		- 000	- 10	
Acreage Estimation Method	F		ц.	- 12			ы				- 14	ы	F	-	- 14			ы.	-	-	. 12	Ι	Ι	Į.		i.	Ŀ	_		Ι	-	Ľ		ы	<u>.</u> -	- 12	-	-	i.	ы	. 🗅	-	ст. F	in (n	. 14	н
Irrigated Acres	0.00 125.00	1		+I-C			0:00		100.001		;	;	:	137.00	0.00				129.00	00.901		130.00	232.00	:		:	;	122.00	225.00 126.00	256.06	128.00		127.00	:			00.06	257.00	:	;		:		- 000	-	1
Irrigation Method	None Pivot	Flood	Pivot	Pivot			None		Direct	Pivot	Pivto	Pivot	Pivot	Disot	Wheel Lines		Pivot	Pivot	Pivot	Diviset	Pivot	Pivot	Pivot	Pivot		Pivot	Pivot	Pivot	Wheel Lines Pivot	Pivot	Pivot	Direct	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Divot	Plvot	Pivot	Pivot None	Pivot	Pivot
Crop Type	None Alf	Alf, Grain	Alf	Alf			None			All, UI388	Alf	Alf	Alf	Grass Hav	None	Alf, Grass	Hay Alf. Grass	Hay	Alf	Dastrina	Alf	Alf	Alf, Grass Hay	Alf, Grass Hav	Alf, Grass	Hay	AII, Urass Hay	Alf	Alf Alf	Alf	Alf	416	Alf	Alf	Alf	Alf	Alf	Alf, Grass Hay	Alf, Grass Hay	Alf, Grass Hav	Alf, Grass Hav	нау Alf, Grass	Hay	Alf None	Alf	Alf
	KOBEH VALLEY RANCH LLC GROTH. DANIEL E.	PALMORE, DONALD FRANK	ETCHEGARAY, FRED L.	BALLEY, CAKOLYN KEPHART, MARI A.	KOBEH VALLEY RANCH LLC	KOBEH VALLEY KANCH LLC	BAILET, BARBAKA MOLL. HOLLOND, & VELMA M	MOLL, HOLLON D. & VELMA M.	MOLL, HOLLON D. & VELMA M.	MOLL, HOLLON D. & VELMA M.	KOBEH VALLEY RANCH LLC MARK & TERESA MOVIE FAMILY TRUST	EUREKA COUNTY	GALLAGHER FARMS, LLC; A NEVADA LIMITED	GALLAGHER FARMS, LLC: A NEVADA LIMITED	LIABILITY COMPANY	MARK MOYLE FARMS, LLC	FRED L. ETCHEGARAY AND JOHN J. ETCHEGARAY, A NEVADA DADTNEDSHID	ANDERSEN, HARLOW B. & BONNIE G.	DENNIS L WEST & KIM KENNEDY WEST	RENNER, IRA R. & MONTIRA	RENNER. IR A R. & MONTIRA	and a second second second second from a second	RENNER, IRA R. & MONTIRA	RENNER, IRA R. & MONTIRA	MOYLE, DENISE L. AND HICKS, DEANNE M.	SADLER RANCH, LLC MOYLE, DENISE L, AND HICKS, DEANNE M.	WILLIAM H NORTON	JOSEPH L RAND AND ELLEN M RAND REVOCABLE LIVING TRUST DATED MAY 9 1996	JOSEPH L RAND AND ELLEN M RAND REVOCABLE	BENSON, PATTI E.	WILLIAM H NORTON	WILLIAM H NORTON MOVI E DENISE L AND HICK'S DEANNE M	RAND, JOSEPH L. AND ELLEN M.	MARK & TERESA MOYLE FAMILY TRUST DATED 12/22/1999	J.W.L. PROPERTIES, LLC	J.W.L. PROPERTIES, LLC	J.W.L. PROPERTIES, LLC		J.W.E. FROTER HES, EEC	J.W.L. PROPERTIES, LLC	DIAMOND VALLEY RANCH LLC DIAMOND VALLEY RANCH LLC	RAND, JOSEPH LAND ELLEN M	NORTON, WILLIAM H JR AND PATRICIA A			
Supplementally Adjusted Duty Acre-Feet	578.80								400.30	00.001+				405.07	242.00			02.000	502.72	506 80	00'000	631.18	530,00					545.44	902.08 533.60	1,024.24	547.88		632.00		00.869	00'070	327.80	1,028.80						584.40		620.00
Permitted Duty Acre-Feet	172.00 578.80	617.20	502.40	00.02	0.00	0.00	172.00	0.00	0.00	288.67	288.67	71.71	288.67	0.00 405.07	242.00	23 501	05.521	229.11	502.72	506 80	1.280.00	631.18	33.20	128.40		128.40	240.00	545.44	402.08 207.22	123.60	153.76	20.4.12	632.00	469.92	295.12 628.00	0.00	327.80	362.40	128.00	398.40	00.65	00.70	88.00	1,099.20 584.40	405.80	136.00
Supplementally Adjusted Permitted Acres	144.70								12.001	17.071				27 201	60.50			00 ave	125.68	02.901	170./0	157.75	305.92					136.36	225.52 133.40	256.06	165.00		158.00		157.00	007/01	81.95	257.20						146.10		155.00
Permitted Acres	75.30 144.70	303.94	125.60	120.00			118.30		12 001	107.61	107.61	107.61	107.61	173 77	60.50	211.46	211.40	205.82	125.68	02901	320.00	157.75	305.92	305.92		305.92	305.92	136.36	225.52 133.40	256.06	165.00	165.00	158.00	256.06	256.06	158.00	81.95	257.20	257.20	257.20	06726	12.107	257.20	274.80 146.10	156.00	78.00
Supplemental Application Number	50962, 57838	14948	39156	5			50962, 50963			9	9	9	9			=		=			18242		12	12	2	17	12		82704T, 82705T 81269	13	77666	37744	00077	8	2	19965		14	14	1	14		14	19904, 24609	19966	15
Sup	Y	Y	Υ,	× ×			Y			٨	×	γ	Y			;	×	Y			γ		Y	٨		Y	Y		× ۲	Y	٨	>	-	Y	Y	Y		Y	Y	Y	• >	_	Y	Y	γ	~
Rng	52E 53E	54E	54E	53E	52E	52E	52E	52E 22E	52E 67E	32E 53F	53E	53E	53E	52E 54F	53E	64E	24E	54E	54E	\$4E	54E	54E	53E	53F.		53E	53E	53E	52E 53E	54E	54E	646	53E	54E	54E 53F	53E	54E	53E	53E	53E	53F	100	53E 53E	53E 53E	53E	54F
Twn	23N 21N	22N	22N	21N	23N	23N	23N	23N	23N	NH-7	20N	20N	20N	23N 21HN	20N	inte	N12	21N	22N	NEC	22N	22N	25N	25N		25N	25N	21N	24N 21N	21HN	23N	NCC	21N	21HN	21HN 21N	21N	21HN	20N	20N	20N	N0C	107	20N	21N 21N	21N	VIIIC
Sec	13 2	28	\$	24	13	13	13	13	13	oc -	-	-	-	13	32		4	4	19	~	• ٢	4	5	\$		5	5	23	13	33	27	5	17	33	33	12	34	4	4	4	. 4	Ŧ	4	28	12	33
ð	WN	SW	WN	MN	SW	SW	NW	SW	SW SW	MN	MN	MM	NW	SW	MN	MIN	MN	MN	SE	В	JE LT02	SW	SW	MS		MM	NW	MN	NW	SE	SE	MIN	SE	SE	SE	SE	MN	SE	LT16	LT16	5	10	SE	B B	NE	сD
00	NW SW	NE	SW	s s	SE	SE	NW	SE	H H	E E	SE	SE	SE	SE	MN	, H	NE	NE	SW	E	31	SE	NE	NE		SE	SE	NE	SE	SE	MN	8	NE	SE	SE	MN	MN	MN			ws	** 0	SW	SW	SW	CW
Status	CER CER	CER	CER	CER	PER	PER	CER	PER	PER	CER	CER	CER	CER	PER	PER		CEK	CER	CER	GED	PER	PER	PER	PER		PER	PER	PER	PER	CER	PER	DED	CAN	CER	CER	PER	CER	PER	PER	PER	DER	FLA	PER	PER	PER	CCD
App No	50963 51647	53872	55535	56652	57835	57836	57838	57839	57840	64630	64631	64632	64633	66062	68923	LOSUE	/800/	70588	70940	71748	72370	73899	73570	73571		73572	73573	76358	77082	77646	77665	2226	77673	77695	78062	78447	78568	78771	78772	78773	47787	10/14	78775	78905	80581	80717

17

JA1173

SE ROA 860

	Pumpage Estimation Method	Z	z	z	z	z	z	z		z	z		z	z	z	z	
	Pun Estin Me																
	Acre-Feet Pumped	:	:	:	:	:	455.88	37.56		;	;	No Estimate	;	:	:		25,251.57 75,036.99
	Acreage Estimation Method	F	н	F	4	F	I	-		ц	F		F	н	F	F	Total Estimated Acreage25,251.57Total Estimated Pumpage75,036.99
	Irrigated Acres	:	;	;	;	:	155.00	12.77		;	;	No Estimate	;	;	;		Total Estim otal Estima
	Irrigation Method	Pivot	None	Pivot	Pivot	Pivot	Pivot	Pivot		Pivot	Pivot		Pivot	Wheel Lines	Wheel Lines	Pivot	Ţ
	Crop Type	Grass Hay Pivot	None	Alf	Alf	Alf	Alf	Alf	Alf, Grain,	Grass	Alf		Alf	Alf	Alf	Alf	
2 rop Inventory and Groundwater Pumpage for Irrigation - Diamond Valley - Basin 153, 2013	Owner of Record	SESTANOVICH HAY & CATTLE LLC	SESTANOVICH HAY & CATTLE LLC	NORTON, WILLIAM H JR AND PATRICIA A	NORTON, WILLIAM H JR AND PATRICIA A	NORTON, WILLIAM H JR AND PATRICIA A	NORTON, WILLIAM H JR	HALPIN, JAYME L		MOYLE, JAMES L AND N JANE	MOYLE, DENISE L. AND HICKS, DEANNE M.	EUREKA MOLLY, LLC	SHADY MEADOWS, INC	SADLER RANCH, LLC	SADLER RANCH, LLC	J & TFARMS, LLC	
or Irrigation - Diamo	rmitted Duty Supplementally Acre-Feet Adjusted Duty Acre-Feet											106.45					31,583.10 125,332.08
ater Pumpage fo	Permitted Duty Acre-Feet A	640.00	640.00	249.52	87.28	44.00	103.20	51.08		1,280.00	207.22	106.45	485.33	500.00	204.74	442.64	ficated Acreage cated Pumpage
ntory and Groundw	Supplementally Adjusted Permitted Duty Supplementally Acres Adjusted Duty Acre-											26.61					Ily Adjusted Permitted/Certificated Acreage y Adjusted Permitted/Certificated Pumpage
Crop Inve	Permitted Acres	160.00	160.00	77.00	78.00	78.00	155.00	12.77		320.00	133.40	26.61	156.00	225.52	225.52	158.00	
	Supplemental Application Number	18988	18989	15	15	15	15	31455	-	_	77569		6	77082, 82705T	77082, 82704T	19015	Total Suplementa Total Suplemental
	Sup	Υ	Υ	Y	Y	Y	γ	Υ		Y	Υ		Υ	Y	Y	Υ	
	Rng	53E	53E	54E	54E	54E	54E	53E		54E	53E	53E	53E	52E	52E	54E	
	Тwn	20N	20N	21HN	21HN	21HN	21HN	20N		23N	21N	20N	21N	24N	24N	21N	
	Sec	10	10	32	32	32	32	Ξ		32	14	21	34	24	23	5	
	ð	SE	NE	SE	SE	SE	SE	SW		NE	SE	LT15	NE	NW	SE	NW	
	00	SE	SE	SW	SW	SW	SW	SE		SE	NE		NW	NE	NW	SE	
	Status	PER	PER	CER	CER	CER	CER	PER		PER	PER	PER	PER	PER	PER	PER	
	App No	80780	80781	80879	80880	80881	80926	81004		81268	81269	81650	82368T	82704T	82705T	82798T	

¹ PERMITS 19145, 29873, 30102, 36070, 50650 AND 81268 HAVE A TOTAL COMBINED DUTY OF 2,560.00 AFA.

² PERMITS 19378, 20000, 24605 AND 82368T HAVE A TOTAL COMBINED DUTY OF 2,560.00 AFA.

³ PERMITS 19972, 19973, 34948 AND 46348 HAVE A TOTAL COMBINED DUTY OF 1,281.32 AFA.

⁴ PERMITS 24262, 24263, 24264 AND 24265 HAVE A TOTAL COMBINED DUTY OF 1,888.00 AFA.

⁷ PERMITS 42367, 42368, 42370 AND 56652 HAVE A TOTAL COMBINED DUTY OF 480.00 AFA.

² PERMITS 42891, 64630, 64631, 64652 AND 64633 HAVE A TOTAL COMBINED DUTY OF 430, 44 AFA

PERMITS 43269, 43837, 43838, 43839 AND 43840 HAVE A TOTAL COMBINED DUTY OF 530,00 AFA

* PERMITS 43271, 43272, 43273 AND 43274 HAVE A TOTAL COMBINED DUTY OF 2,080.00 AFA.

³ PERMITS 44604, 44605, 44606, 44607, 44609 AND 44610 HAVE A TOTAL COMBINED DUTY OF 502.00 AFA.

¹⁰ PERMITS 47518, 47519, 47520 AND 47521 HAVE A TOTAL COMBINED DUTY OF 1,270.16 AFA.

¹¹ PERMITS 48871, 48872, 70587 AND 70588 HAVE A TOTAL COMBINED DUTY OF 852.7 AFA.

¹² PERMITS 73570, 73571, 73572 AND 73573 HAVE A TOTAL COMBINED DUTY OF 530,00 AFA.

¹³ PERMITS 77646, 77695, 77696, AND 80718 HAVE A TOTAL COMBINED DUTY OF 1,024.24 AFA.

¹⁴ PERMITS 78771, 78774, 78774, AND 78775 HAVE A TOTAL COMBINED DUTY OF 10288 AF A ¹⁶ PERMITS 80717, 58679, 80889, 80881 AND 80926 HAVE A TOTAL COMBINED DUTY OF 60.00 AFA.

STATE OF NEVADA

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES

DIVISION OF WATER RESOURCES

JASON KING, P.E. STATE ENGINEER

DIAMOND VALLEY HYDROGRAPHIC BASIN 10-153

CROP INVENTORY

CALENDAR YEAR 2014

Prepared by: Shannon McDaniel Landon Harris and Kyle Wolf

> JA1175 SE ROA 862

ABSTRACT	Page
	I
HYDROGRAPHIC BASIN SUMMARY	2
PURPOSE AND SCOPE	
DESCRIPTION OF THE STUDY AREA	
GROUNDWATER LEVELS	
METHODS TO ESTIMATE IRRIGATED ACREAGE	5
METHODS TO ESTIMATE PUMPAGE	5
TABLES	6
FIGURES	7
APPENDIX A. 2014 DIAMOND VALLEY CROP INVENTORY	

LIST OF TABLES

	Page
Table 1. Diamond Valley historical irrigated acreage and pumpage data.	6

LIST OF FIGURES

Page Figure 1. Physiographic map of Diamond Valley (Hydrographic Basin 10-153)7
Figure 2. Map showing Diamond Valley irrigated acreage and water level monitoring sites 8
Figure 3. Graph showing Diamond Valley historical irrigated acreage and pumpage. The NIWR method to estimate pumpage was used starting in 2013; estimates may differ significantly from previous years. Annual pumpage data for 2010 through 2012 are revised from previous crop inventories per State Engineer's Order 1264

ABSTRACT

This inventory represents the status and usage of all permitted, certificated, and claims of vested right groundwater rights for irrigation purposes located within Diamond Valley, Hydrographic Basin 10-153, for the year 2014. **Only those groundwater rights associated with irrigation purposes are represented in this report**. For a listing and summary of all other manners of use within the basin please refer to the <u>Nevada Division of Water Resources Hydrographic Basin Summary</u>.

The data presented are valid for the time period of this report and may vary from previously published figures as water rights within the basin are subject to administrative action, such as certification, cancellation, forfeiture or withdrawal on a continuing basis.

For the year 2014, the permitted and certificated groundwater rights for irrigation purposes totaled **31,425 acres** with a total duty of 124,700 acre-feet within Diamond Valley. An estimated **24,676 acres** were irrigated and 73,136 acre-feet were pumped during 2014.

JA1177 SE ROA 864

HYDROGRAPHIC BASIN SUMMARY

HYDROGRAPHIC BASIN NUMBER	153, REGION 10
HYDROGRAPHIC BASIN NAME	DIAMOND VALLEY
COUNTIES	EUREKA AND ELKO
MAJOR COMMUNITIES	EUREKA
DESIGNATED BASIN	DESIGNATED - IRRIGATION DENIED
DENIALS BASED UPON WATER AVAILABILITY	ALL USES
ESTIMATED IRRIGATION PUMPAGE 2014 (ACRE-FEET)	73,136*

STATE ENGINEER'S ORDERS

AUGUST 5, 1964
AUGUST 28, 1964
DECEMBER 22, 1975
JULY 10, 1978
DECEMBER 1, 1982
FEBRUARY 7, 1983
APRIL 4, 1983
MARCH 26, 2013

COMMITTED GROUNDWATER RESOURCE FOR IRRIGATION PURPOSES: 124,700 ACRE-FEET DATE: DECEMBER 2014

NOTE: Committed groundwater resource data are approximate for December 2014. Rights may be subject to change applications, certification, withdrawals, forfeiture and cancellations; each of these circumstances could impact the duty, diversion rate and acreage associated with a given right. Be advised this report acknowledges that other manner of uses may be present in the basin; however, only those groundwater rights associated with irrigation purposes are represented in this report.

* Acreage represented in this report may have surface water rights appurtenant. This report acknowledges those acres with surface water rights but is not intended to quantify, nor present any definitive use of those surface water rights. The data represent only the pumping of groundwater and the acreage to which it is applied.

PURPOSE AND SCOPE

The purpose of this report is to inventory all of the groundwater resources allocated to irrigation and described by the Office of the State Engineer, Nevada Division of Water Resources (NDWR), and to estimate the amount of groundwater pumped for irrigation purposes within the Diamond Valley Hydrographic Basin (10-153), for the year 2014.

DESCRIPTION OF THE STUDY AREA

The Diamond Valley Hydrographic Basin is located in central Nevada (Figure 1), occupying approximately 735 square miles in Eureka and Elko Counties. The adjacent hydrographic basins are Huntington Valley (4-035) to the northeast, Little Smoky Valley - Northern Part (155A) and Newark Valley (10-154) to the east, Antelope Valley (10-151) to the southwest, Kobeh Valley (10-139) to the west, and Pine Valley (4-053) to the northwest.

Diamond Valley is bounded by the Diamond Mountain Range to the east, by the Mahogany Hills to the south, and to the west by the Sulphur Spring Range. Diamond Valley is approximately 20 miles wide by 56 miles long with basin elevations ranging from approximately 5,760 feet above mean sea level on the valley floor to approximately 10,000 feet in the surrounding mountains. Irrigation occurs primarily in the south central part of the basin (Figure 2).

GROUNDWATER LEVELS

Depths to groundwater in Diamond Valley are measured by multiple agencies on an annual basis. Sites at which water level measurements are made by or reported to NDWR include:

153 N20 E52 26AABC2	153 N20 E53 02DDDD1
153 N20 E53 10DDDD2	153 N20 E53 20BC 01
153 N20 E53 28ADC 01	153 N20 E53 30ABCC2
153 N20 E53 32BBBA1	153 N20 E53 32BDCC1
<u>153 N21 E52 10AAAC1</u>	<u>153 N21 E52 10AAAC2</u>
<u>153 N21 E53 01CDCC2</u>	<u>153 N21 E53 02CCAA1</u>
<u>153 N21 E53 03CDBB2</u>	<u>153 N21 E53 04CDBB1</u>
153 N21 E53 08BACC1	153 N21 E53 08DCAA1
153 N21 E53 09DBDD1	<u>153 N21 E53 11CDBB2</u>
<u>153 N21 E53 12DCAA2</u>	<u>153 N21 E53 13DA 1</u>
<u>153 N21 E53 15BACC2</u>	<u>153 N21 E53 16CCAA3</u>
<u>153 N21 E53 21DCAA2</u>	<u>153 N21 E53 22BDBB2</u>
<u>153 N21 E53 23DACC1</u>	<u>153 N21 E53 24ADBB1</u>
<u>153 N21 E53 27ACAA3</u>	<u>153 N21 E53 28BBDD1</u>
<u>153 N21 E53 34DDB 02</u>	<u>153 N21 E53 35BDBB2</u>
<u>153 N21 E53 36CDD 01</u>	<u>153 N21 E54 05BDBB1</u>
<u>153 N21 E54 08CDDD1</u>	<u>153 N21 E54 20BACC2</u>
<u>153 N21HE52 35ADD 2</u>	<u>153 N21HE54 32DCC 2</u>
<u>153 N22 E51 01CBAB1</u>	<u>153 N22 E51 01DBBB1</u>
<u>153 N22 E51 12ADCD1</u>	<u>153 N22 E51H12DBBC1</u>
	153 N20 E53 10DDDD2 153 N20 E53 28ADC 01 153 N20 E53 32BBBA1 153 N21 E52 10AAAC1 153 N21 E52 10AAAC1 153 N21 E53 01CDCC2 153 N21 E53 03CDBB2 153 N21 E53 03CDBB2 153 N21 E53 03CDBB2 153 N21 E53 08BACC1 153 N21 E53 08BACC1 153 N21 E53 09DBDD1 153 N21 E53 12DCAA2 153 N21 E53 15BACC2 153 N21 E53 23DACC1 153 N21 E53 23DACC1 153 N21 E53 34DDB 02 153 N21 E53 36CDD 01 153 N21 E54 08CDDD1 153 N21 E54 08CDD1

153 N22 E51H13DADB1	153 N22 E52 07DBBD1	153 N22 E52 07DBBD2
<u>153 N22 E52 11ACCB1</u>	<u>153 N22 E52 16CCCB1</u>	153 N22 E52 17DDAC1
<u>153 N22 E52 17DDCA1</u>	<u>153 N22 E52 18ACDB1</u>	<u>153 N22 E52 18CBDD1</u>
<u>153 N22 E52 18CBDD2</u>	<u>153 N22 E52 19CBBC1</u>	<u>153 N22 E52 20CBDC1</u>
<u>153 N22 E54 05CDBB2</u>	<u>153 N22 E54 05DDBB2</u>	<u>153 N22 E54 06CCCC1</u>
<u>153 N22 E54 07DDCD2</u>	<u>153 N22 E54 18CADD1</u>	<u>153 N22 E54 19CC 1</u>
<u>153 N22 E54 22CCDD1</u>	<u>153 N22 E54 28AACC1</u>	<u>153 N22 E54 28DCCC2</u>
<u>153 N22 E54 32DDCD1</u>	<u>153 N22 E54 33BBDD1</u>	<u>153 N23 E51 36ACDC1</u>
<u>153 N23 E52 13BBA 1</u>	<u>153 N23 E53 27BB 1</u>	<u>153 N23 E53 29CCCA1</u>
<u>153 N23 E53 31BBD 01</u>	<u>153 N23 E54 20DD 1</u>	<u>153 N23 E54 27ACC 1</u>
<u>153 N23 E54 29CDDD2</u>	<u>153 N23 E54 30DDD 2</u>	<u>153 N23 E54 32CDD 01</u>
<u>153 N24 E53 06BDAB1</u>	<u>153 N25 E54 28BCBC1</u>	

Groundwater level data have also been collected by the U.S. Geological Survey (USGS) and can be accessed through their website (<u>http://nevada.usgs.gov</u>).

METHODS TO ESTIMATE IRRIGATED ACREAGE

This report estimates the number of acres irrigated by the groundwater pumped under permits, certificates, and claims of vested right issued by the State Engineer. Table 1 and Figure 3 present the current and historic irrigated acreage and pumpage; Appendix A presents estimates detailed by certificate, permit, or vested claim number. The following methods were used to arrive at the estimated acreage:

- Field inspection of the place of use was conducted to estimate the number of acres under cultivation.
- In cases where field inspection of the place of use was not practical, aerial and/or satellite imagery were analyzed to determine acreages.

METHODS TO ESTIMATE PUMPAGE

This report estimates the amount of groundwater pumped under the permits and certificates issued by the Nevada State Engineer as well as claims of vested right in the Diamond Valley Hydrographic Basin. The following methods were used to arrive at the estimated use:

- Where totalizing meters were in place, meter readings were taken and compared with previous data (if available).
- Where meters were not in place and the use was irrigation, pumpage was estimated by multiplying the number of hours the well was operated during the past year (determined from an hour meter reading or asking the water user) by the certificated diversion rate.
- Where there were no flow meters or other reliable options for estimating pumpage and the use was irrigation, pumpage was estimated by dividing the Net Irrigation Water Requirement (NIWR) for the crop grown by the efficiency of the irrigation method used, then multiplying by the number of acres irrigated. Irrigation efficiencies associated with three types of irrigation methods are: pivot at 85%; wheel line or other hand moved sprinklers at 75%; and flood at 60%. The pumpage amount estimated by this method was limited by the duty of the permit. For places where the groundwater rights were supplemental to surface water, groundwater use was estimated using the NIWR method above, but adjusted based on available surface water for the year. Evapotranspiration and NIWR data the NDWR website by basin can be found on at: http://water.nv.gov/mapping/et/et_general.cfm. This approach using the NIWR to estimate pumpage was used starting in 2013; this and subsequent pumpage estimates may differ significantly from estimates of previous years.
- Where lands are irrigated by both surface water and groundwater, the surface water supply for the irrigation season was considered in estimating groundwater pumpage.

TABLES

Year	2010	2011	2012	2013	2014
Acres Irrigated	24,608	24,357	25,234	25,252	24,676
Acre-Feet Pumped*	71,400	70,600	73,200	75,037	73,136

Table 1. Diamond Valley historical irrigated acreage and pumpage data.

* The NIWR method to estimate pumpage was used starting in 2013; estimates may differ significantly from previous years. Annual pumpage data for 2010 through 2012 are revised from previous crop inventories per State Engineer's <u>Order 1264</u>.

FIGURES

Figure 1. Physiographic map of Diamond Valley (Hydrographic Basin 10-153).

JA1183 SE ROA 870

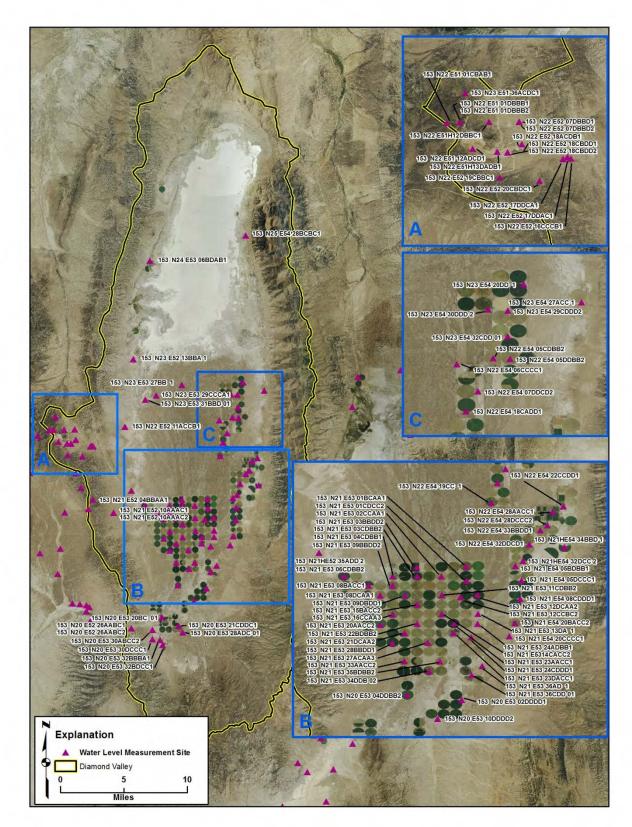


Figure 2. Map showing Diamond Valley irrigated acreage and water level monitoring sites.

Figure 3. Graph showing Diamond Valley historical irrigated acreage and pumpage. The NIWR method to estimate pumpage was used starting in 2013; estimates may differ significantly from previous years. Annual pumpage data for 2010 through 2012 are revised from previous crop inventories per State Engineer's <u>Order 1264</u>.

APPENDIX A. 2014 DIAMOND VALLEY CROP INVENTORY.

JA1186 SE ROA 873

EXPLANATION OF COLUMN HEADINGS

App No	The file number of the Application to Appropriate/Change Water or the Claim of Vested Right.
Status	Indicates the status of an application: Permit (PER), Certificated (CER), or a Claim of Vested Right (VST).
QQ Q Sec Twn Rng	The quarter-quarter of the Section in which the point of diversion is located. The quarter of the Section in which the point of diversion is located. The Section in which the point of diversion is located. The Township in which the point of diversion is located. The Range in which the point of diversion is located.
Sup	Indicates whether the groundwater right is part of a group of groundwater rights used to irrigate all or a portion of the same acreage (supplemental). A "Y" in this column signifies the groundwater right is supplemental to other groundwater rights.
Supplemental Application Number	The application number(s) of the water right(s) that are supplemental to one another.
Permitted Acres	The number of acres defined by the permit or certificate that is eligible to be irrigated.
Supple- mentally Adjusted Permitted Acres	The supplementally adjusted, total number of acres that is eligible to be irrigated under a supplemental group of water rights.
Permitted Duty Acre-Feet	The amount of water that may be pumped in a given year, or season, as defined by the permit, certificate, or claim of vested right. If there is a supplemental group, the total combined duty is listed as a supplementally adjusted duty.
Supple- mentally Adjusted Duty Acre-Feet	The supplementally adjusted, total combined duty that may be pumped in a given year, or season, for a supplemental group of water rights, expressed in acre-feet. The supplementally adjusted, total combined duty is listed at the end of a supplemental group in bold .
Owner of Record	The owner of the water right as recorded in the records of the State Engineer. A water right may have more than one owner of record. Only the first, alphabetically, is listed in this table.
Crop Type	Indicates whether or not a crop was in production during the water year. If a crop was in production, the common name description of the plants under cultivation if given (e.g. alfalfa).

Irrigation Method	The method by which the water is applied to the crop and ground (e.g. pivot).
Irrigated Acreage	The estimate of the number of acres irrigated associated with a particular water right. A "-" in this field indicates that pumpage was attributed to a senior supplemental permit or certificated water right.
Acreage Estimation Method	The method by which the number of acres irrigated was determined. F – Field inspection. I – Aerial or satellite imagery.
Acre-Feet Pumped	The estimate of the amount of water pumped under a particular water right, expressed in acre-feet. One acre-foot equals 325,851 gallons. A "-" in this field indicates that pumpage was attributed to a senior supplemental permit or certificated water right.
Pumpage Estimation	The method used to estimate the amount of water pumped. M – Totalizing meter readings. N – NIWR Method. D – Duty.

Pumpage Estimation Method	D	N	Z	Z	Z	z	z	z	z	Z	z	z	z	z	z	z	z	N	Z	z	z	z	z	Z	z	Z	z	z	z	z	z	N	z ;	z ;	zz	: Z	Z	z	Z	Z	V	z	z
Acre-Feet E Pumped	617.20	644.12	258.82	1	464.71	0.00	0.00	1	338.82	1	276.47	352.94	355.88	306.35	717.65	720.59	379.74	0.00	743.65	I	370.59	705.88	0.00	370.59	;	0.00	364.24	;	ı	502.40	170.59	352.94	350.00	364.71	478.82	329.41	314.71	376.47	367.65	361.76	660.41	370.59	485.29
Acreage Estimation Method	I	I	I	F	I	F	ц	H	I	ц	-	Ι	I	-	I	I	I	н	н	ц	I	Ι	н	Ι	н	ц	Ι	F	н	I	н	Ι	- I					П	Ι	I	-		-
Irrigated Acres	308.60	219.00	88.00	;	158.00	0.00	0.00	;	120.00	1	94.00	125.00	121.00	124.00	244.00	245.00	129.11	0.00	258.00	I	126.00	240.00	0.00	126.00	;	0.00	129.00	ı	;	157.00	58.00	125.00	119.00	124.00	162.80	112.00	107.00	128.00	125.00	123.00	09 200	126.00	165.00
Irrigation Method	Flood	Pivot	Pivot	Pivot	Pivot	Flood	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	None	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	None	None	Pivot	Pivot	Pivot	Wheel Lines	Pivot	Pivot	Pivot	Pivot	Pivot Divot	Pivot	Pivot	Pivot	Pivot	Pivot	Direct	Pivot	Pivot
Crop Type	Alf, Grain	Alf	Alf	Alf	Alf, Grass	None	None	None	Grass Hav	Grass Hay	. Alf	Grass Hay	Alf	Grain	Alf, Grass Hay	Alf	Alf	None	Alf, Grass Hay	Alf, Grass Hav	Alf	Alf	Grass Hay	Alf	None	None	Grass Hay	AII, UTASS Hay	Alf	Grass Hay	Alf	Grass Hay	Alf, Grain	Alf	Alf	Alf	Alf	Pasture	Alf	Alf	Alf, Grass Unive	Alf	Alf
e Owner of Record	PALMORE, DONALD FRANK	ANDERSEN, BONNIE G.	ALLEN, ROGER & JUDY	ALLEN, ROGER & JUDY	MACHACEK, JERRY L. & TRINA L.	BECK FAMILY TRUST	JUANITA RUTHEL MARTIN TRUST 95%	JUANITA RUTHEL MARTIN TRUST 95%	JUANITA RUTHEL MARTIN	JUANITA RUTHEL MARTIN TRUST 95%	MOYLE, DENISE L. AND HICKS, DEANNE M. Alf	SMITH, CRAIG ALLEN & SHELBA KAY	SMITH, CRAIG ALLAN & SHELBA KAY	FRED L. ETCHEGARAY AND JOHN J. ETCHEGARAY, A NEVADA PARTNERSHIP	NEWTON, DEBRA L.	NEWTON, DEBRA L.	EUREKA COUNTY; GALLAGHER FARMS, LL AIF	HILL, HOWARD SR.; HILL, KATHY	A.G. FARM COMMODITIES, INC.	A.G. FARM COMMODITIES. INC.	SESTANOVICH HAY & CATTLE LLC	COOPER, CHARLES C.	COOPER, ERMYLE R.	SESTANOVICH HAY & CATTLE LLC	SESTANOVICH HAY & CATTLE LLC	COOPER, CHARLES E.	J & T FARMS, LLC	NEWTON, DEBRA L.	NEWTON, DEBRA L.	MARK MOYLE FARMS, LLC	MILES, HAROLD R.	MOYLE, JAMES L.	ANDERSON, JERRY LEE	HALPIN, SANDRA L.	CKANE, WILLIAM A. CKANE Durbay feddiot & Caddie M	D V CORPORATION	D.V. CORPORATION	SESTANOVICH HAY & CATTLE LLC	ETCHEGARAY, LEROY W.	ETCHEGARAY, LEROY W.	MOVE DITETVE	MOYLE, DUSTY L.	MOYLE, DUSTY L.
Supplementally Adjusted Duty Acre-Feet	1,234.40	1,280.00	825.16		1,112.88	836.00	1,280.00		1.280.00		638.00	640.00	640.00	640.00	1,276.23	1.277.81	516.44	1,176.00	1,280.00		1,230.00	1,111.36	624.00	640.00	640.00	640.00	1,816.00			640.00	622.00	2,560.00	1,124.62	1,252.80	332.00	559.20	529.60	632.00	620.00	620.00	1 756 00	632.00	960.00
Permitted Duty Acre- Feet	617.20	1,280.00	825.16	825.16	1,112.88	836.00	1,280.00	1,280.00	1.280.00	1,280.00	480.00	640.00	640.00	640.00	1,276.23	1.277.80	516.44	1,176.00	1,280.00	1.280.00	727.28	1,023.36	624.00	640.00	640.00	91.20	640.00	1,276.23	1,277.80	640.00	622.00	640.00	524.30	596.60	735.68	559.20	529.60	632.00	620.00	620.00	070.70	632.00	960.00
Supplementally Adjusted Permitted Acres	612.54	320.00	206.29		278.22	209.00	320.00		320.00		159.50	160.00	160.00	160.00	319.06	319.45	129.11	294.00	320.00		307.50		156.00	160.00	160.00	160.00	454.00			160.00	155.50	640.00	281.16	313.20	222.42 83.00	139.80	132.40	158.00	155.00	155.00	314.00	158.00	240.00
Permitted Acres F	308.60	320.00	206.29	206.29	278.22	209.00	320.00	320.00	320.00	320.00	120.00	160.00	160.00	160.00	319.06	319.45	129.11	294.00	320.00	320.00	181.82	255.84	156.00	160.00	160.00	22.80	160.00	319.06	319.45	160.00	155.50	160.00	131.08	149.15	206.60	139.80	132.40	158.00	155.00	155.00	04 4 60	158.00	240.00
Supplemental Application Number	53872	72370	18622, 44621	18621, 44621	22551		18787	18786	18789	18788	31111				19052	19053			18928	18927	34950	42019, 42020	39553	80780	80781	42021	-	18834	18835		23893	2	24214	29765	21561, 24378						3		
Sup	γ	γ	Y	Y	Υ		Y	Υ	Y	γ	Y				¥	Y			Y	Y	Y	Y	Υ	Υ	Y	Y	Y	Y	Y		Y	Υ	Υ;	, γ	×						>	-	
Rng	54E	54E	53E	53E	53E	53E	53E	53E	53E	53E	53E	53E	53E	54E	54E	54E	54E	54E	53E	53E	53E	53E	53E	53E	53E	53E	54E	54E	54E	54E	54E	54E	53E	53E 52E	53E 53E	53E	53E	53E	54E	54E	53E	53E	53E
Twn	22N	22N	21N	21N	20N	21N	21N	21N	21N	21N	21N	21N	21N	22N	21 N	21N	21N	21N	21N	21N	20N	21N	21N	20N	20N	21N	21N	21N	21N	22N	22N	23N	20N	20N	20N	21N	21N	20N	22N	22N	NIC		21N
Sec	28	7		36	-	35	13								17	17		16	26	26		4	4				5	17							21							5 8	33
õ	SE	NE	NE	NE	LT12	SE	NE	NW	SE	SW	NE	SE	SW	NE	SE	SW	SE	SW	MM	MS	NE	NE	SE	SE	NE	NE	NE	NE	ΝW	SW	SW	SW	SW	SE	SW	NF H	SE	SE	SW	SE	NIW/	NE	SE
00	SW	SW	SE	SW	1	SE	NE	NE				NE	NE	SE	SE	SE		SE	NE		SW		SE				MM	MM							SE	SW	SW	SE			NIW/		NW
Status	CER	CER		CER	CER	CER	CER	CER				CER			CER	CER		CER	CER	CER		CER	CER				CER	CER		CER					CER						deb		CER
App No St	14948 CI	18242 CI	18621 CI	18622 CI	18623 CI	18714 CI	18786 CI	18787 CI				18796 CI		18802 CI	18834 CI	18835 CI		18911 CI	18927 CI	18928 CI		18978 CI	18981 CI				19014 CI	19052 CI		19110 CI					19218 CI					19361 CI	10379 01		19381 CI

JA1189

App No	Status	8	ð	Sec	Тwn	Rng	Sup	Supplemental Application Number	Permitted Acres	Supplementally Adjusted Permitted Acres	Permitted Duty Acre- Feet	Supplementally Adjusted Duty Acre-Feet	Owner of Record	Crop Type	Irrigation Method	Irrigated Acres	Acreage Estimation Method	Acre-Feet Pumped	Pumpage Estimation Method
19411	CER	MN	SW	32	20N	53E			96.00	96.00	384.00	384.00	HOMESTAKE MINING COMPANY OF CALIFORNIA	Alf	Pivot	80.00	Ι	235.29	Z
19490	CER		LT06	9	22N	54E			173.07	173.07	692.28	692.28	SOLARLJOS LLC	None	Wheel Lines	0.00	н	0.00	N
19492	CER	NE	SE	34	21N	53E	Y	20015	314.00	314.00	1.256.00	1.256.00	CONLEY, BEVERLY A. AND CONLEY, KENNETH E.	Alf	Pivot	252.00	Н	741.18	z
19500	CER		LT13	20	20N	53E			166.10	166.10	664.40	664.40	CONLEY LAND & LIVESTOCK, LLC	Alf	Pivot	125.00	1	367.65	Z
19501	CER	SW	ΝM	20	20N	53E			164.48	164.48	657.92	657.92	CONLEY LAND & LIVESTOCK, LLC	Grass Hay	Pivot	113.00	I	319.06	Z
19502	CER	SW	SE	20	20N	53E			152.27	152.27	609.08	80.909	CONLEY LAND & LIVESTOCK, LLC	Alf, Grain	Pivot	95.00	Ι	279.41	Z
19526	CER	SE	SW	15	20N	53E			301.00	301.00	1,204.00	1,204.00	BAUMAN, JAMES E.	Grass Hay	Pivot	253.00	Ι	714.35	N
19541	CER			28	21N	53E			141.30	141.30	565.20	565.20	DIAMOND VALLEY RANCH, LLC	Alf	Pivot	123.00	Ι	361.76	Z
19542	CER			28	21N	53E			117.00	117.00	468.00	468.00	DIAMOND VALLEY RANCH, LLC	Alf	Pivot	116.00	Ι	341.18	N
19563	CER	SE	SE	1	21N	53E	Y	19971, 28160	319.87	319.87	1,279.48	1,279.48	PLASKETT, TOMMYEJ.	Grass Hay	Pivot	252.00	I	741.18	Z
19760	CER			8	21N	54E	Υ	28061	319.00	319.00	1,276.00	1,276.00	BURNHAM FARMS, LLC	Alf	Pivot	244.00	Ι	717.65	N
19904	CER	SE		29	21N	53E	Y	24609, 78905	158.00	280.80	632.00	1,108.14	DIAMOND VALLEY RANCH, LLC	Alf	Pivot	126.00	I	370.59	N
19965	CER			12	21N	53E	Y	78447	158.00	158.00	632.00	632.00	RAND, JOSEPH L. AND ELLEN M.	Alf	Pivot	130.00	I	382.35	Z
19966	CER	SW	NE	12	21N	53E	Υ	80581	156.00	156.00	218.20	624.00	RAND, ELLEN M.	Alf	Pivot	128.00	I	376.47	N
17991	CER	SW	NE	-	21N	53E	Y	19563, 28160	319.87		779.16		PLASKETT, TOMMYE J.	Grass Hay	Pivot	1	н	1	z
19972	CER	SE	ΜN	1	21N	53E	Υ	4	320.33	320.33	1,281.32	1,281.32	PLASKETT, TOMMYE J.	Alf, Grass Hay	Pivot	251.00	Ι	723.53	z
19973	CER	SE	SW	-	21N	53E	γ	4	320.33		1,281.32		PLASKETT, TOMMYE	Alf, Grass Hay	Pivot	I	н	I	Z
20000	CER	NW	NE	34	21N	53E	Υ	e	156.00		624.00		MOYLE, DUSTY L.	Alf	Pivot	;	н	;	N
20015	CER			34	21N	53E	Y	19492	158.00		632.00		MOYLE, DUSTY L.	Alf	Pivot	1	ц	1	z
20046	CER		NW	33	22N	54E			160.00	160.00	640.00	640.00	BURNHAM FARMS, LLC	Grass Hay	Pivot	125.00	I	352.94	z
20087	CER	SE		20	21N	53E	Y	24607	156.00	308.00	624.00	1,232.00	DIAMOND VALLEY RANCH, LLC	Grass hay	Pivot	126.00	I	355.76	Z
20088	CER			20	21N	53E	Y	24606	158.00	312.00	632.00	1,248.00	DIAMOND VALLEY RANCH, LLC	Grass Hay	Pivot	126.00	Ι	355.76	N
20366	CER			22	22N	54E			159.58	159.58	638.31	638.31	MARK MOYLE FARMS, LLC	Grass Mix	Pivot	134.00	I	378.35	z
20487	CER			22	21N	53E			127.70	127.70	510.80	510.80	MARSHALL, REESE W.	Alf	Pivot	125.00	I	367.65	N
20565	CER	SE	ΜN	32	20N	53E			73.00	73.00	292.00	292.00	EUREKA COUNTY	Pasture	Pivot	64.00	-	188.24	z
20694	CER	SE	NE	21	20N	53E	Y	21399	172.22	253.29	688.88	1,013.16	ETCHEVERRY FAMILY LIMITED PARTNERSHIP	Alf	Pivot	63.00	Ι	185.29	z
21085	CER	SE	NW	35	21N	53E	Υ	23462, 23803	156.40	327.60	625.60	1,310.40	MILLER, ANTHONY	Alf	Pivot	126.00	Ι	370.59	z
21300	CER	MS	MM	6	20N	53F	>	20694	753 79		1 013 16		ETCHEVERRY FAMILY LIMITED PARTNERSHIP	Alf	Pivot	63.00	F	185 29	Z
21426	CER	SW	SE	15	21N	53E	-		160.00	160.00	640.00	640.00	MORRISON, LLOYD & BELINDA FAYE	Alf	Pivot	127.00		373.53	z
21428	CER		NE	11	21N	53E			156.00	156.00	624.00	624.00	BENSON, PATTI E. AND KENNETH F.	Grass Hay	Pivot	133.00	I	375.53	N
21561	CER	SE	NW	21	20N	53E	Y	19218, 24378	129.92		519.68		EUREKA MOLY LLC	Alf	Pivot	1	F	1	N
21839	CER	SW	SW	16	21N	53E			158.00	158.00	632.00	632.00	ALLEN, MAX D.	Alf	Pivot	131.00	Ι	385.29	N
21841	CER	SE	ΜN	21	21N	53E			158.00	158.00	632.00	632.00	MICHEL & MARGARET ETHCEVERRY FAMILY LP	Alf	Pivot	125.00	Ι	367.65	z
21843	CER			15	21N	53E			156.00	156.00	624.00	624.00	MORRISON, BELINDA FAYE	Alf	Pivot	123.00	I	361.76	N
21844	CER			15	21N	53E			158.00	158.00	632.00	632.00	COOPER, CHARLES E.	Grass Hay	Pivot	126.00	Ι	355.76	N
21929	CER	SW	NW	28	21N	53E			157.60	157.60	630.40	630.40	DIAMOND VALLEY RANCH, LLC	Alf	Pivot	130.00	I	382.35	Z
21930	CER		NE	27	21N	53E			158.80	158.80	635.20	635.20	AMERICAN FIRST FEDERAL	Alf	Pivot	126.00	I	370.59	N
22194	CER	SE	SW	3	21N	53E			134.00	134.00	536.00	536.00	BAILEY, TIMOTHY LEE AND CONSTANCE MARIE	Alf	Pivot	127.00	Ι	373.53	Z
22195	CER	SE	SE	б	21N	53E			155.50	155.50	622.00	622.00	BAILEY, TIMOTHY LEE AND CONSTANCE MARIE	Grass Hay	Pivot	131.00	Ι	369.88	Z
22217	CER	SE		20	20N	53E			163.57	163.57	654.28	654.28	CONLEY LAND AND LIVESTOCK LLC	Alf	Pivot	82.00	I	241.18	Z
	CER			27	21N	53E			157.20	157.20	628.80	628.80	AMERICAN FIRST FEDERAL	Alf	Pivot	121.00	I	355.88	Z
22352	CER			19	22N	54E			32.20	32.20	129.28	129.28	MARK MOYLE FARMS, LLC			No Estimate		No Estimate	
1	CER		NE	19	22N	54E			158.00	158.00	632.00	632.00	MORRISON, BELINDA F.	Grass Hay	Pivot	126.00	-	355.76	z
22551	CER	SE	SW	36	21N	53E	Y	18623	181.69		726.76		ALLEN, ROGER & JUDY	Alf, Grain	Pivot	1	Н	1	z

JA1190

SE ROA 877

JA1191

29557 CER 29755 CER 29873 CER 29873 CER 30012 CER 30012 CER 30012 CER 30012 CER 30012 CER 30012 CER 31063 CER 31110 CER 31113 CER 31114 CER 31113 CER 31114 CER 31113 CER 31114 CER 31113 CER 311455 CER 311455 CER 311456 CER 33669 CER 33671 CER 33817 CER 33818 CER 34561 CER 34562 CER 34593 CER 34593 CER 34593 CER 349350 CER 349		SE 2		Twn Rng	ig Sup	p Number	Permitted Acres	Permitted Acres	Feet	Adjusted Duty Acre-Feet	Owner of Record	Crop Type	Irrigation Method	Irrigated Acres	Estimation Method	Acre-Feet Pumped	Estimation Method
			20 23N				121.84	121.84	487.36	487.36	MOYLE, JAMES L. & N. JANE	Alf	Pivot	121.84	Ι	358.35	z
			18 20N	N 53E	ΕY	19192	313.20		1,252.80		HALPIN, SANDIE L.	Alf, Grain	Pivot	124.00	I	364.71	z
		SW 3	32 23N	N 54E	E Y	2	320.00		1,280.00		MOYLE, JAMES L.	Alf	Pivot	376.00	Ι	1,105.88	z
		NE 3	33 22N	N 54E	LT.		125.66	125.66	502.64	502.64	CHANEY ASSOCIATES	Alf, Grass Hav	Pivot	124.00	-	364.71	z
	SE				ΕY	2	320.00		890.27		MOYLE, JAMES L.	Alf	Pivot	1	ц	1	Z
					ß		119.45	119.45	477.80	477.80	MOYLE, DUSTY L.	Grass Hay	Pivot	127.00	-	358.59	z
	SE		33 22N	N 54E	ΕY	30928	125.66	125.66	69.12	502.64	TROYER, JOHN AND LOUISE	Alf	Pivot	125.00	Ι	69.12	Z
				N 54E	E Y	30927	125.66		502.64		TROYER, JOHN AND LOUISE	Alf	Pivot	I	I	298.53	Z
	SW S	SW 1	12 21N	N 53E	m		138.42	138.42	553.68	553.68	RAND, JOSEPH L. AND ELLEN M.	Timothy	Pivot	128.00	Ι	361.41	Z
			12 21N	N 53E	сu		130.80	130.80	523.20	523.20	RAND, JOSEPH L. AND ELLEN M.	Alf	Pivot	126.00	П	370.59	z
					μ		135.36	135.36	541.44	541.44	MOYLE, DENISE L. AND HICKS, DEANNE M. Alf	M. Alf	Pivot	123.00	Ι	361.76	z
CER CER CER CER CER CER CER CER CER CER				N 53E	ш		135.36	135.36	541.44	541.44	MOYLE, DENISE L. AND HICKS, DEANNE M. Alf	M. Alf	Pivot	126.00	г	370.59	Z
CER CER CER CER CER CER CER CER CER CER	NE		23 21N	N 53E	ΕY	18794	39.50		158.00		MOYLE, DENISE L. AND HICKS, DEANNE M. Alf	M. Alf	Pivot	31.00	Ι	91.18	Z
CER CER CER CER CER CER CER CER CER CER	NE	NW 1	11 21N	N 53E	ш		133.40	133.40	533.60	533.60	MOYLE, DENISE L. AND HICKS, DEANNE, M AIF	M Alf	Pivot	124.00	I	364.71	z
CER CER CER CER CER CER CER CER CER CER	NE		11 21N	N 53E	ш		134.40	134.40	537.60	537.60	MOYLE, DENISE L. AND HICKS, DEANNE M. Alf	M. Alf	Pivot	122.00	Ι	358.82	Z
CER CER CER CER CER CER CER CER CER CER			11 20N	N 53E	ш		130.00	130.00	520.00	520.00	HALPIN, JAYME L.	Alf	Pivot	127.00	Ι	373.53	N
CER	SE S	SW 1	11 20N	N 53E	ΕY	81004	128.03	140.80	512.12	563.20	HALPIN, JAYME L.	Alf, Grass	Pivot	112.23	Ι	330.09	Z
CER CER CER CER CER CER CER CER CER CER	SE	NE	16 21N	N 53E	tr.		120.00	120.00	480.00	480.00	MARTIN P. & KATHLEEN A. ETCHEVERRY TRUST & ETCHEVERRY. MARK T. &	Alf	Pivot	127.00	_	373.53	z
CER CER CER CER CER CER CER CER CER CER											MARTIN P. & KATHLEEN A. ETCHEVERRY						
CER CER CER CER CER CER CER CER CER CER	SW	SE 1	16 21N	N 53E	μ		120.00	120.00	480.00	480.00	TRUST & ETCHEVERRY, MARK T. & JENNIFER	Alf	Pivot	122.00	П	358.82	z
CER CER CER CER CER CER CER CER CER CER			20 21N	N 54E	ΕY	33669	305.94	305.94	1,223.74	1,223.74	WISEHART, LARRY	Alf	Pivot	126.00	I	370.59	z
CER CER CER CER CER CER CER CER CER CER	SE	SE 2	20 21N	N 54E	ΕY	33668	305.94		1,223.74		WISEHART, LARRY	Alf	Pivot	1	н	1	Z
CER CER CER CER CER CER CER CER	SW S		20 21N	N 54E	ΕY	33671	316.18	316.18	1,264.70	1,264.70	WISEHART, LARRY	Alf	Pivot	125.00	Ι	367.65	N
CER CER CER CER CER CER CER			20 21N	N 54E	E Y	33670	316.18		1,264.70		WISEHART, LARRY	Alf	Pivot	1	н	;	Z
CER CER CER CER CER CER			27 21N	N 53E	ш		127.90	127.90	511.60	511.60	SHUEY, CHRISTENE K. AND DAVID M.	Grass Hay	Pivot	124.00	-	350.12	z
CER CER CER CER CER CER	SW S	SW 2	27 21N	N 53E	ш		127.70	127.70	510.80	510.80	SHUEY, CHRISTENE K. AND DAVID M.	Grass Hay	Pivot	124.00	Ι	350.12	Z
CER CER CER CER CER					ш		129.00	129.00	516.01	516.01	MARK MOYLE FARMS, LLC	Alf	Pivot	124.00	I	364.71	z
CER CER CER							124.87	124.87	499.48	499.48	MARK MOYLE FARMS, LLC	Alf	Pivot	124.87	Ι	367.26	Z
CER CER						48.	237.10	237.10	501.82	948.40	MORRISON, CHERYL A.	Alf	Pivot	121.00	-	355.88	z
CER	SE	SW 2	22 22N	N 54E	ΕY	48437	130.00	130.00	520.00	520.00	MARK MOYLE FARMS, LLC	Alf	Pivot	120.00	Ι	352.94	N
CER	NF	MS	N1C 1	N 53F	> 11	4	12640		505 60		DI ASKETT TOMMVE I	Alf, Grass Hav	Divot	1	ц	:	Z
						18975	125.68		502.72		SESTANOVICH HAY & CATTLE LLC	Alf	Pivot	125.68		369.65	: 2
CER					6		160.00	160.00	640.00	640.00	BENSON, KENNETH F.	Grass Hay	Pivot	120.00		338.82	z
CER			22 21N	N 53E	ш		127.90	127.90	511.60	511.60	GOLD STREET FARM, LLC	Alf	Pivot	122.00	Ι	358.82	Z
35013 CER	SE	SW 2	21 21N	N 53E	EL)		136.66	136.66	546.64	546.64	MICHEL & MARGARET ETHCEVERRY FAMILY LP	Alf	Pivot	124.00	П	364.71	z
35374 CER	SW S	SW WS	7 21N	N 53E	B		27.11	27.11	108.44	108.44	DUBRAY, FERNO L. & CARRIE M.	Alf	Pivot	22.00	Ι	64.71	Z
CER					m		96.76	96.76	387.04	387.04	DUBRAY, FERNO L. AND CARRIE M.	Alf	Pivot	92.00	I	270.59	z
35418 CER	Г	LT16 2	29 20N	N 53E	ш		1.00	1.00	4.00	4.00	RUBIO, DAVID M.	Grass	Sprikler	1.00	Н	3.20	Z
36070 CER	SE	SE 3	32 23N	N 54E	ΕY		160.00		640.00		MOYLE, JAMES L.	Alf	Pivot	1	н		z
36321 CER	Γ	LT01 2	2 21N	N 53E	ΕY	22922, 36322	161.59		304.01		BENSON, PATTI E. AND KENNETH F.	Alf	Pivot	:	F	;	Z
	Γ	LT01 2	2 21N		ΕY	22922, 36321	161.59		323.18		BENSON, PATTI E. AND KENNETH F.	Alf	Pivot	I	н	1	Z
39156 CER		NE	5 22N	N 54E		55535	312.56	312.56	1,250.24	1,250.24	ETCHEGARAY, FRED L.	Alf, Grain	Pivot	246.00	Ι	665.65	N
CER			4 21N				138.03	138.03	552.12	552.12	COOPER, ERMYLE R.	Alf	Pivot	129.00	I	379.41	z
CER							135.81		543.24		COOPER, ERMYLE R.	Grass Hay	Pivot	125.00	Ι	367.65	Z
CER							138.03		552.12		COOPER, ERMYLE R.	Alf	Pivot		н	,	z
CER	SE		32 21HN		ΕY		114.66	125.66	458.64	502.64	MILLER, LYNFORD & SUSAN	Alf	Pivot	114.00	Π	335.29	N
40011 CER		NW 3	32 21HN	HN 54E	Е	40014	27.40	125.66	108.59	501.59	BURNHAM FARMS, LLC	Alf	Pivot	27.40	Ι	80.59	Z

JA1192

SE ROA 879

2014	
- Basin 153,	
- Diamond Valley	
r Irrigation -	
Pumpage for	
nd Groundwater	
Inventory a	
Crop	

JA1193

Pumpage Estimation Method	N	z	Z	Z	z	N	N	z	N	z	N	zz	4 Z	z	z	Z	Z	N	z	Z		:	z		z	z	Z	z	N		zŻ	z ;	N	N	N	Z	Z	Z	D	D	D	D	z	z
Acre-Feet E Pumped	319.06	1	:	296.50	297.50	355.88	361.76	369.65	0.00	0.00	370.59	249.66 441 52	70.11	129.20	172.00	367.65	617.20	;	15.12	32.94	0.00	0.00	93.13 0.00	0.00	352.94	185.52	:	;		0.00	364.03 0.00	0.00		ı	369.65	376.47	I	382.35	33.20	128.40	128.40	240.00	358.82	6.45
Acreage Estimation Method	Ι	н	F	I	ц	Ι	I	-	F	н	I		. LI		-	Ι	I	н	-	н			-		Ι	-	н	н	н			L (4	н	I	I	н	-	I	ц	Н	F	Ι	П
Irrigated Acres	113.00	;	;	205.00	I	121.00	123.00	125.68	0.00	0.00	126.00	235.00		118.30		125.00	;	:	5.14	;			:		120.00	;	;	;	;		123.77	0.00	:	1	125.68	128.00	I	130.00	232.00		ı	ı	122.00	225.00
Irrigation Method	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	None	None	Pivot	Pivot	Divot	Wheel Lines	Wheel Lines	Pivot	Flood	Pivot	Pivot	Pivot			Wheel Lines		Pivot	Pivot	Pivto	Pivot	Pivot		Pivot	w neel Lines	FIVOL	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Wheel Lines
Crop Type	Grass Hay		Alf	Alf, Grass Hay	Alf, Grass Hay	Alf	Alf	Alf	None	None	Alf	Alf	Alf	Alf	Alf	Alf	Alf, Grain	Grain	Alf	Alf			Alf		Alf, Grass	Alf	Alf	Alf	Alf		Alf	Alf, Grass	нау Alf, Grass	Hay	Alf	Pasture	Alf	Alf	Grass Hay	Grass Hay	Grass Hay	Grass Hay	. Alf	Grass Hav
y Owner of Record	MORRISON, CHERYL A.	MORRISON, CHERYL A.	MOYLE, MARK STEPHEN	GALLAGHER FARMS, LLC; A NEVADA LIMITED LIABILITY COMPANY	GALLAGHER FARMS, LLC; A NEVADA LIMITED LIABILITY COMPANY	BAILEY, CAROLYN	MOYLE, DUSTY L.	MOYLE, DUSTY L.	DUBRAY, FERNO L. & CARRIE M.	DUBRAY, FERNO L. & CARRIE M.	MOYLE, DUSTY L.	SADLER RANCH, LLC S ADJ ED DANGH T I C	MOVIE LAMESI	KOBEH VALLEY RANCH LLC	KOBEH VALLEY RANCH LLC	GROTH, DANIEL E.	PALMORE, DONALD FRANK	ETCHEGARAY, FRED L.	BAILEY, CAROLYN	KEPHART, MARI A.	KOBEH VALLEY RANCH LLC	KOBEH VALLEY KANCH LLC	KOBEH VALLEY RANCH LLC VOBEH VALLEY BANCH I LC	VOBEL VALLEY AVIALLEY	BAILEY, BARBARA	MOLL, HOLLON D. & VELMA M.	KOBEH VALLEY RANCH LLC	MARK & TERESA MOYLE FAMILY TRUST	GALLAGHER FARMS, LLC; A NEVADA	GALLAGHER FARMS, LLC; A NEVADA	LIMITED LIABILITY COMPANY	MARK MOYLE FARMS, LLC	FRED L. ETCHEGARAY AND JOHN J. ETCHEGARAY, A NEVADA PARTNERSHIP	ANDERSEN, HARLOW B. & BONNIE G.	DENNIS L WEST & KIM KENNEDY WEST	RENNER, IRA R. & MONTIRA	MOYLE, DENISE L. AND HICKS, DEANNE M. Alf	SADLER RANCH, LLC						
Supplementally Adjusted Duty Acre-Feet				852.70		499.12	502.72	502.72	118.52		508.80	1,100.04		473.20		578.80									408.30						495.07	742.00			502.72	506.80		631.18	530.00				545.44	902.08
Permitted Duty Acre- Feet	482.30	300.00	272.80	296.50	327.10	478.56	502.72	502.72	118.52	118.52	508.80	249.66	640.00	129.20	172.00	578.80	617.20	502.40	20.56	160.00	0.00	0.00	0.00	0.00	408.30	288.67	288.67	71.71	288.67	0.00	495.07	242.00	00.021	229.11	502.72	506.80	1,280.00	631.18	33.20	128.40	128.40	240.00	545.44	6.45
Supplementally Adjusted Permitted Acres				213.20		124.78	125.68	125.68	29.63		127.20	275.01		118.30		144.70									120.71						123.77	00.00			125.68	126.70		157.75	305.92				136.36	225.52
Permitted Acres 1	120.58	120.58	130.00	213.20	213.20	119.64	125.68	125.68	29.63	29.63	127.20	275.01	16.012	75.30	75.30	144.70	303.94	125.60	5.14	120.00			118.30		120.71	107.61	107.61	107.61	107.61		123.77	00.00	211.40	205.82	125.68	126.70	320.00	157.75	305.92	305.92	305.92	305.92	136.36	225 52
Supplemental Application Number	34596, 48226	34596, 48225	34939	12	12	55272			49854	49853		50582	20201	50963, 57838	50962, 57838		14948	39156	48948	o			50962, 50963			٢	7	4	4			<u>0</u>		12			18242		13	13	13	13		14
Sup	Υ	Y	Y	Y	Y	Y			Y	Y		× >	- >	×	Y		Y	Y	Y	Y		;	×			Y	Y	Y	Y			;	Y	Y			Υ		Υ	Y	Y	Y		>
Rng	53E	53E	54E	54E	54E	53E	54E	54E	53E	53E	54E	53E 52E	54F	52E	52E	53E	54E	54E	53E	53E	52E	52E	52E 57E	275	52E	53E	53E	53E	53E	52E	54E	350	04E	54E	54E	54E	54E	54E	53E	53E	53E	53E	53E	50F
Twn	21N	21N	22N	21N	21N	21N	23N	23N	21N	21N	23N	24N	NF2	23N	23N	21N	22N	22N	21N	21N	23N	23N	23N	N107	24N	20N	20N	20N	20N	23N	21HN	NI07	N17	21N	22N	22N	22N	22N	25N	25N	25N	25N	21N	74N
Sec	7	7	22	4	4	9	29	29	7	7	30	9 4	ۍ ډ	13	13	2	28	5	9	24	13	13	13	2 2	36	-	-	-	-	13	34 5	76 .	4	4	19	~	7	4	5	S	5	5	23	13
ð	NW	NW	SW	NE	NE	SW	SW	SW	SW	LT08	SW	NW cw	MM	MN	ΝM	NW	SW	NW	SW	NW	SW	NS.	NW SW	- MS	MS	ΝM	NW	NW	NW	SW	SW	M N	MN	MM	SE	SE	LT02	SW	SW	SW	NW	NW	NW	NW
00	SE	SE	SE	SE	SE	SE	SE	SE	SW		SE	SE	MS	MN	ΜN	SW	NE	SW	SE	SE	SE	SE	NW ds	3 5	SE	SE	SE	SE	SE	SE	SW	MZ I	NE	NE	SW	SE		SE	NE	NE	SE	SE	NE	ЦS
Status	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	CER	PER	PER	CER	DED	CER	CER	CER	CER	CER	PER	CER	TEK	CEK	CER	CER	CER	PER	PER	PER	PER	PER	PER	PER	DED
App No S			48437	48871	48872		49185					50581									57835	5/830	57838	01972			64631	64632	64633	66062	67172		/ 900/		70940	71748	72370	73899			73572	73573	76358	77082

JA1194

SE ROA 881

Pumpage Acre-Feet Estimation Pumped Method	198.29 N	370.59 N		153.76 N	222.71 N	469.92 N		N 88.005	241.03 N	362.40 N	128.00 N	250.42 N	Z	Z		0.00 N	z -		2 Z		- N	z			37.56 N	N	- N	late				342.96 N
Acreage Estimation Acre Method Pu	F 19			1	F 22	F 46		L 33		1 36	F 12	F 25	ц	ſī.	Е	F 0	ц	L. D	L 11	н	F	ц		I 45	1 3	F	F					F 34
					-						-	I	-	_		-										Т						
Irrigated Acres	1	126.00	256.06	128.00	1	1	1	121.00	81.95	257.00	I	I	1	1	1	0.00	1	1	: :	1	;	•	1	155.00	12.77	ł	1	No Estimate	0.00	0.00	5	:
Irrigation Method	Wheel Lines	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	None	Pivot	Pivot Divot	Pivot	None	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	Pivot	:	None	None	None	Wheel Lines
Crop Type	Grass Hay	Alf	Alf	Alf	Alf	Alf	Alf	Alf	Alf	Alf, Grass Hay	Alf	None	Alf	Alf	Grass Hay	None	Alf	Alf	Alf	Alf	Alf Grain	Alt, Grain, Grass	Alf	:	None	None	None	Alf				
ecord		HICKS, DEANNE M.		LEN M RAND IST DA TED MAY 9	LEN M RAND JST DATED MAY 9			HICKS, DEANNE M. LEN M.	FAMILY TRUST						CH LLC	CH LLC	LEN M	AND PATRICIA A	NTTLE LLC	VTTLE LLC	AND PATRICIA A	AND PATRICIA A	AND PATRICIA A			JANE	HICKS, DEANNE M.					
Owner of Record	SADLER RANCH, LLC	MOYLE, DENISE L. AND HICKS, DEANNE M. Alf	WILLIAM H NORTON	JOSEPH L RAND AND ELLEN M RAND REVOCABLE LIVING TRUST DA TED MAY 9 1996	IOSEPH L RAND AND ELLEN M RAND REVOCABLE LIVING TRUST DATED MAY 9 1996	WILLIAM H NORTON	WILLIAM H NORTON	MOYLE, DENISE L. AND HICKS, DEANNE M. AH RAND, JOSEPH L. AND ELLEN M.	MARK & TERESA MOYLE FAMILY TRUST DATED 12/22/1999	J.W.L. PROPERTIES, LLC	DIAMOND VALLEY RANCH LLC	DIAMOND VALLEY RANCH LLC	RAND, JOSEPH L AND ELLEN M	NORTON, WILLIAM H JR AND PATRICIA A Nobton with tam h in	SESTANOVICH HAY & CATTLE LLC	SESTANOVICH HAY & CATTLE LLC	NORTON, WILLIAM H JR AND PATRICIA A	NORTON, WILLIAM H JR AND PATRICIA A	NORTON, WILLIAM H JR AND PATRICIA A	NORTON, WILLIAM H JR	HALPIN, JAYME L	MOYLE, JAMES L AND N JANE	MOYLE, DENISE L. AND HICKS, DEANNE M. Alf	EUREKA MOLLY, LLC	J & T FARMS, LLC	J & T FARMS, LLC	J & T FARMS, LLC	SADLER RANCH, LLC				
Supplementally Adjusted Duty Acre-Feet	S	533.60 N		JU R 547.88 1	- <u>-</u>	Δ		628.00 N	327.80 D	1,028.80 J.	ľ	ľ	'n	'n	Ц	584.40 D		620.00 N	< S	s	Z	Ζ	Z	~ -	-	Ν		106.45 E			-	s
Permitted S Duty Acre- Feet	198.29	207.22	123.60	153.76	394.12	469.92	295.12	0.00	327.80	362.40	128.00	398.40	52.00	88.00	1,099.20	584.40	405.80	136.00	640.00	640.00	249.52	87.28	44.00	103.20	51.08	1,280.00	207.22	106.45	189.36	544.00	442.64	895.63
Supplementally Adjusted Permitted Acres		133.40	256.06	165.00				007/51	81.95	257.20						146.10		155.00										26.61				
Permitted Acres I	225.52	133.40	256.06	165.00	165.00	256.06	256.06	158.00	81.95	257.20	257.20	257.20	257.20	257.20	274.80	146.10	156.00	78.00	160.00	160.00	77.00	78.00	78.00	155.00	12.77	320.00	133.40	26.61	158.00	150.00	158.00	225.52
Supplemental Application Number	14	81269	2	77666	77665	15	15	19965		16	16	16	16	16	19904, 24609		19966 17	15	18988	18989	11	2 5	1	71 166	31455	2	77569				14	t
Sup	Υ	Y	×	Х	Y	Y	Y	Y		Y	Y	Y	¥	Y	Y		Y	۲ ×	×	Υ	Υ	Y	Y	Y	Y	Υ	Υ	:	+ ۲	× >	۲ :	Y
Rng	52E	53E	54E	54E	54E	54E		53E	54E	53E	53E	53E	53E	53E	53E	53E	53E	54E		53E	54E	54E	54E	54E	53E	54E	53E	53E	54E	54E 54E	54E	52E
Twn	24N	21N	21HN	23N	23N	21HN	21HN	21N	21HN	20N	20N	20N	20N	20N	21N	21N	21N	21HN	20N	20N	21HN	21HN	21HN	21HN	20N	23N	21N	20N	21N	21N	21N	24N
Sec	13	14	33	27	27	33	33	12	5 2	4	4	4	4	4	28	28	12	32	10 cc	10	32	32	32	32	=	32	14	21	ŝ	s v	ŝ	24
ð	ΜN	SE	SE	SE	MN	SE	SE	SE	MN	SE	LT16	LT16	SE	SE	NE	NE	BE	SE	SE	NE	SE	SE	SE	SE	SW	NE	SE	LT15	MN	SW	M N	ΜN
00	SE	MN	SE	MN	SE	SE	SE	MN	MN	MN			SW	SW	SW	SW	SW	SW	SE	SE	SW	SW	SW	SW	SE	SE	NE		NE	NE SE	SE	NE
Status	PER	PER	CER	PER	PER	CER	CER	PER	CER	PER	PER	PER	PER	PER	PER	PER	PER	CER	PER	PER	CER	CER	CER	CER	PER	PER	PER	PER	PER	PER	PER	PER
App No	77083	77569	77646	77665	77666	77695	77696	78447	78568	78771	78772	78773	78774	78775	78905	78906	80581	80719	80780	80781	80879	80880	80881	80926	81004	81268	81269	81650	83615	83616	83617	83672T

JA1195

Supplemental Supplementally Permitted Supplementally App No Status QQ Q See Twn Rug Sup Number Acres Permitted Acres Feet Acre-Feet Owner of Record	Crop Type	Irrigation Method	Irrigated Acres	Acreage Estimation Acthod	Acre-Feet Pumped	Pumpage Estimation Method
, 83615, 83616 AND 83617 HAVE .						
² PERMITS 19145, 29873, 30102, 36070, 50650 AND 81268 HAVE A TOTAL COMBINED DUTY OF 2,560.00 AFA.						
³ PERMITS 19378, 20000 AND 24605 HAVE A TOTAL COMBINED DUTY OF 2,560.00 AFA.						
⁴ PERMITS 19972, 19973, 34948 AND 46348 HAVE A TOTAL COMBINED DUTY OF 1,281.32 AFA.						
⁵ PERMITS 24262, 24264 and 24265 have a total combined duty of 1,888.00 afa.						
⁶ PERMITS 42367, 42368, 42369, 42370 AND 56652 HAVE A TOTAL COMBINED DUTY OF 480.00 AFA.						
⁷ PERMITS 42891, 64631, 64631, 64632 AND 64633 HAVE A TOTAL COMBINED DUTY OF 430,44 AFA.						
8 PERMITS 43269, 43837, 43838, 43839 AND 43840 HAVE A TOTAL COMBINED DUTY OF 520.00 AFA.						
⁹ PERMITS 43271, 43272, 43273 AND 43274 HAVE A TOTAL COMBINED DUTY OF 2,080.00 AFA.						
¹⁰ PERMITS 44604, 44605, 44606, 44607, 44609 AND 44610 HAVE A TOTAL COMBINED DUTY OF 502.00 AFA.						
¹¹ PERMITS 47518, 47519, 47520 AND 47521 HAVE A TOTAL COMBINED DUTY OF 1,270.16 AFA.						
¹² PERMITS 48871, 48872, 70587 AND 70588 HAVE A TOTAL COMBINED DUTY OF 852.7 AFA.						
¹³ PERMITS 73570, 73571, 73572 AND 73573 HAVE A TOTAL COMBINED DUTY OF 530.00 AFA.						
¹⁴ PERMITS 77082, 77083, 83672T AND 83673T HAVE A TOTAL COMBINED DUTY OF 902.08 AFA.						
¹⁵ PERMITS 77646, 77695, 77696 AND 80718 HAVE A TOTAL COMBINED DUTY OF 1,024.24 AFA.						
¹⁶ PERMITS 78771, 78772, 78773, 78774 AND 78775 HAVE A TOTAL COMBINED DUTY OF 1,028.8 AFA.						
¹⁷ PERMITS 80717, 80879, 80880, 80881 AND 80926 HAVE A TOTAL COMBINED DUTY OF 620.00 AFA.						