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A.1.0 STtaTUS OF SNWA DATA COLLECTION ACTIVITIES

In support of the Project, SNWA has been conducting various field activities to collect hydrologic,
geologic, and water-chemistry data. Of particular interest to this report are the data obtained from
drilling and aquifer testing for SNWA monitor and test wells and ongoing ET studies. These data
collection activities are discussed within this section.

A.1.1 SNWA Monitor and Test Wells

WEells provide invaluable data in regard to regional and local hydrogeologic conditions. Numerous
wells exist within the study area; however, most are completed within the basin-fill aquifer. SNWA
has performed multiple drilling programs within the project basins (Figure A-1) with well
completions in the basin-fill, carbonate and volcanic aquifers. In 2005, a monitor well program
consisting of 10 monitor wells was conducted within Delamar (HA 182), Dry Lake (HA 181), Cave
(HA 180), Pahranagat (HA 209), and Tikaboo North (HA 169A) valleys. From 2006 to 2008, eight
8-in.-diameter monitor and six 20-in.-diameter test wellswere drilled in Spring Valley. An additional
monitor and test well were drilled in Cave Valley in 2007. Prior to these programs, SNWA installed
monitor wellsin Coyote Spring Valley (HA 210) and Muddy River Springs Area (HA 219).

Geologic data within the study area were collected and evaluated using existing literature, well
completion logs, SNWA geologic mapping, and surface geophysical surveys. Borehole lithology and
fracture characteristics were evaluated through logging of cuttings and downhole geophysics. The
monitor wells were pump tested for a short period, usually under eight hours, to evaluate general well
performance characteristics, collect water-chemistry samples, and, in Spring Valley, assess the
viability of atest well at the site.

Test wells were installed at six locations in Spring Valley and one location in Cave Valley. The
purpose of the test wells was to collect more extensive hydrologic and water-chemistry data, perform
a step-drawdown test, and conduct a 72- to 120-hr constant-rate test. The test wells are more
extensively developed and hydraulically tested at a higher discharge rate than is possible in the
smaller-diameter monitor wells.

A.1.1.1 Objectives

The primary objective of the well-drilling activities is to refine the current interpretations of the
hydrogeologic framework and regional flow system through the acquisition and analysis of new data.
These data include aquifer properties, geologic, water-chemistry, and water-level data. The wells
provide monitoring points for collection of baseline and long-term data.
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

SNWA has drilled 33 monitor and test wells within the following basinsin the study areaand vicinity
(Figure A-1):

Cave Valley: 3 monitor wellsand 1 test well

Coyote Spring Valley: 6 monitor wells

Delamar Valey: 2 monitor wells

Dry Lake Valey: 2 monitor wells

Muddy River Springs Area: 1 monitor well

Pahranagat Valley: 1 monitor well

Spring Valley (Southern): 4 monitor wellsand 3 test wells
Spring Valley (Northern): 4 monitor wells and 3 test wells
Tikaboo Valley North: 3 monitor wells

A.1.1.2 Well Status

A summary of monitor and test well locations and completion specifications are presented in
Table A-1. Lithologic and downhole geophysical logging, including temperature logs, were
performed during the drilling program. Temperature profile logs are available for all new wells.
With a few exceptions, temperature logs were used in the analysis of thermal gradients in the study
area and in the analysis conducted to estimate source depths for the maor springs (Appendix G).
Recent water-level datafor each well are presented in Table A-2.

Short-term, single-well-pumping tests, generally seven to eight hours in duration, were performed at
limited discharge rates at selected monitor wells after installation (Figure A-2). Water-chemistry
samples were collected for a limited suite of chemical parameters at the end of the short-term test.
Results of the short-term tests were used to assess the viability of atest well at the site for extended
aquifer testing to evaluate aquifer properties. Test wells underwent extensive development after
completion. A step-drawdown test, followed by a 72- to 120-hr constant-rate test, and recovery
measurements were performed on each test well. Water-chemistry samples were collected during the
constant-rate test for an extensive suite of chemical parameters; the resulting data are reported in
SNWA (2008). Table A-3 presents a summary of the aquifer-test information for the test wells.

Data analysis has been completed for tests performed at Wells 184W101, 184W103, and 184W105.
Analyses are currently being performed for the other tests. Additional test details and the preliminary
estimates of aquifer properties derived from the data are presented in Appendix C.

A.1.2 Evapotranspiration Studies

In 2004, SNWA initiated a study to estimate groundwater ET within Spring and White River valeys
in cooperation with the University of Nevada, Las Vegas (UNLV). The study was expanded to Snake
Valley in 2007. Spring and Snake valleys were selected for the study because of their large discharge
areas and their potential for water-resource development. White River Valley was included in the
study because it is the largest discharge area of the WRFS. Descriptions of the objectives, locations,
data collection methods, and data reduction methods are presented within this section. The resulting

Appendix A A-3

SE ROA 50560
JA_15961



Table A-1
SNWA Well Information

UTM UTM Surface Well Hole

HA Northing | Easting | Elevation Depth Depth Screen Interval
Well Name Number (m) (ft amsl) Aquifer (ft bgs)
169M-7 169 4,139,267 | 634,523 | 4,290.93 Basin-Fill 1,490 1,500 995 to 1,480
169W508M 169 4,141,933 | 640,527 | 4,796.01 Carbonate 1,601 1,617 1,160 to 1,580
169W509M 169 4,156,097 | 632,997 | 5,157.81 Carbonate 1,558 1,560 1,448 to 1,548
180W501M 180 4,273,713 | 687,971 | 6,428.63 Carbonate 1,212 1,215 78510 1,189
180wW902M 180 4,248,356 | 689,816 | 5,984.89 Carbonate 903 915 196 to 882
CAV6002M2 180 4,248,366 | 689,783 | 5,982.81 Basin-Fill 887 893 159 to 882
CAV6002X 180 4,248,308 | 689,819 | 5,986.97 Carbonate 901 917 219 to 901
181M-1 181 4,198,200 | 688,535 | 4,963.07 Carbonate 1,472 1,501 765 to 1,451
181W909M 181 4,174,463 | 698,676 | 4,799.41 Basin-Fill 1,260 1,285 637 to 1,240
182M-1 182 4,135,293 | 680,867 | 4,597.78 Volcanic 1,321 1,345 996 to 1,300
182W906M 182 4,133,305 | 690,065 | 4.,796.96 Volcanic 1,702 1,735 1,275t0 1,678
184W101 184 4,282,062 | 733,298 | 6,190.90 Carbonate 1,749 1,760 796 to 1,728
184W103 184 4,293,693 | 713,698 | 5,899.06 Carbonate 1,017 1,046 296 to 996
184W105 184 4,306,176 | 713,991 | 6,007.30 Carbonate 1,135 1,160 416to 1,114
184W502M 184 4,282,116 | 733,294 | 6,189.72 Carbonate 1,800 1,828 495to 1,779
184W504M 184 4,293,712 | 713,647 | 5,900.11 Carbonate 1,020 1,040 309 to 999
184W506M 184 4,306,214 | 713,940 | 6,014.04 Carbonate 1,140 1,160 430to 1,120
184W508M 184 4,281,309 | 724,071 | 6,056.19 Volcanic 1,160 1,180 376 to 1,140
SPR7005M 184 4,330,472 | 710,372 | 6,395.68 Carbonate 1,404 1,412 663 to 1,383
SPR7005X 184 4,330,507 | 710,357 | 6,397.56 Carbonate 1,350 1,395 669 to 1,330
SPR7006M 184 4,328,163 | 723,873 | 6,525.18 Carbonate 1,700 1,720 980 to 1,680
SPR7007M 184 4,303,147 | 727,976 | 6,017.73 Basin-Fill 1,020 1,040 300 to 1,000
SPR7007X 184 4,303,152 | 727,946 | 6,017.53 Basin-Fill 1,020 1,040 299 to 1,000
SPR7008M 184 4,334,703 | 722,865 | 5,704.86 Basin-Fill 946 960 226 to 926
SPR7008X 184 4,334,728 | 722,848 | 5,703.98 Basin-Fill 960 970 240 to 940
209M-1 209 4,168,066 | 677,323 | 5,097.30 Carbonate 1,616 1,616 1,274 to 1,616
CSVM-1 210 4,073,793 | 688,602 | 2,160.60 Carbonate 1,040 1,060 320to 1,020
CSVM-2 210 4,059,370 | 685,625 | 2,572.74 Carbonate 1,400 1,425 720to 1,380
CSVM-3 210 4,102,600 | 679,319 | 2,650.68 Carbonate 1,200 1,220 3801to0 1,180
CSVM-4 210 4,095,971 | 688,086 | 2,842.38 Carbonate 1,600 1,605 800 to 1,580
CSVM-5 210 4,068,774 | 680,295 | 3,130.70 Carbonate 1,780 1,783 1,020 to 1,760
CSVM-6 210 4,078,333 | 686,453 | 2,251.66 Carbonate 1,180 1,200 420to 1,160
UMVM-1 219 4,070,248 | 694,305 | 2,061.88 Carbonate 1,780 1,785 960 to 1,760
A-4 Appendix A
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Table A-2
Water-Level Measurements at SNWA Wells
Measuring Point
Surface Water Water

HA Elevation Elevation Depth | Elevation
Well Name HA Name Number | (ft amsl) (ft) (ft amsl) Date Time | (ftbgs) | (ft amsl)
169M-7 Tikaboo Valley 169 4,290.93 1.39 4,292.32 10/21/2008 10:15 837.99 3,452.94
169W508M Tikaboo Valley 169 4,796.01 1.45 4,797.46 10/22/2008 9:20 1,104.79 | 3,691.22
169W509M Tikaboo Valley 169 5,157.81 1.55 5,159.36 10/22/2008 11:00 1,431.91 | 3,725.90
180W501M Cave Valley 180 6,428.63 241 6,431.04 10/21/2008 11:49 1,053.43 | 5,375.20
180w902M Cave Valley 180 5,984.89 1.19 5,986.08 10/21/2008 13:23 139.91 5,844.98
CAV6002M2 | Cave Valley 180 5,982.81 2.10 5,984.91 10/21/2008 13:45 137.51 5,845.30
CAV6002X Cave Valley 180 5,987.97 1.00 5,988.97 10/21/2008 14:07 142.50 5,845.47
181M-1 Dry Lake Valley 181 4,963.07 1.55 4,964.62 10/21/2008 10:32 675.63 4,287.44
181W909M Dry Lake Valley 181 4,799.41 1.21 4,800.62 10/21/2008 11:31 497.02 4,302.39
182M-1 Delamar Valley 182 4,597.78 1.88 4,599.66 10/21/2008 14:49 827.18 3,770.60
182W906M Delamar Valley 182 4,796.96 2.88 4,799.84 10/21/2008 13:45 1,316.19 | 3,480.77
184W101 Spring Valley 184 6,190.90 1.98 6,192.88 9/25/2008 11:20 482.13 5,708.77
184W103 Spring Valley 184 5,899.06 2.13 5,901.19 9/25/2008 9:23 97.93 5,801.13
184W105 Spring Valley 184 6,007.30 1.85 6,009.15 9/23/2008 16:58 208.69 5,798.61
184W502M Spring Valley 184 6,189.72 1.97 6,191.69 9/25/2008 11:10 481.12 5,708.60
184W504M Spring Valley 184 5,900.11 1.33 5,901.44 9/25/2008 9:20 99.77 5,800.34
184W506M Spring Valley 184 6,014.04 2.40 6,016.44 9/23/2008 16:47 215.35 5,798.69
184W508M Spring Valley 184 6,056.19 1.67 6,057.86 9/25/2008 10:25 276.69 5,779.50
SPR7005M Spring Valley 184 6,395.68 2.80 6,398.48 9/24/2008 8:36 493.61 5,902.07
SPR7005X Spring Valley 184 6,397.56 2.78 6,400.34 9/24/2008 8:26 495,51 5,902.05
SPR7006M Spring Valley 184 6,525.18 2.68 6,527.86 9/24/2008 13:40 769.65 5,755.53
SPR7007M Spring Valley 184 6,017.73 2.08 6,019.81 9/24/2008 16:05 151.85 5,865.88
SPR7007X Spring Valley 184 6,017.53 2.90 6,020.43 9/24/2008 16:17 151.77 5,865.76
SPR7008M Spring Valley 184 5,704.86 2.80 5,707.66 9/24/2008 13:08 14.15 5,690.71
SPR7008X Spring Valley 184 5,703.98 211 5,706.09 9/24/2008 13:16 13.86 5,690.12
209M-1 Pahranagat Valley 209 5,097.30 1.17 5,098.47 10/21/2008 9:16 1,200.52 | 3,896.78
CSVM-1 Coyote Spring 210 2,160.60 2,160.60 10/10/2008 10:30 340.24 1,820.36
CSVM-2 Coyote Spring 210 2,572.74 2,572.74 10/9/2008 8:17 749.3 1,823.44
CSVM-3 Coyote Spring 210 2,650.68 2,650.68 10/9/2008 11:37 443.1 2,207.58
CSVM-4 Coyote Spring 210 2,842.38 2,842.38, 10/9/2008 10:35 967.81 1,874.57
CSVM-5 Coyote Spring 210 3,130.70 3,130.70 10/9/2008 9:10 1083.73 2,046.97
CSVM-6 Coyote Spring 210 2,251.66 2,251.66 10/10/2008 9:25 433.68 1,817.98
UMVM-1 Zr‘:idy River Springs 219 2,061.88 2,061.88 | 10/10/2008 | 11:14 | 2456 | 1,816.28
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

data are incorporated in a summarized ET data set provided in Appendix E. Also, the results of the
3-year data collection period (2005 to 2007) are presented in Devitt et al. (2008).

A.1.2.1 Objectives

Initially, SNWA'’s primary objective for the ET study was to refine previous estimates of groundwater
ET using newer methodologies. Several objectives have been added as the ET study has progressed.
These include (1) monitoring the variability in ET rates among different vegetation communities;
(2) gaining an understanding of plant water uptake from groundwater sources versus surface-water
sources; and (3) developing relationships between ET and vegetation indices that represent plant
community health using remote-sensing applications.

A.1.2.2 Locations

ET-monitoring site locations were selected to represent a range of the phreatophytic areas located on
the valley bottoms of selected basins within the study area (Figure A-3 and Table A-4). In 2005, two
towers were rotated among six sites in Spring and White River valleys (three sites in Spring Valley
and three sites in White River Valley). Rotating the towers revealed the variability among the basins
and provided arobust data set for extrapolating to basin ET. It did not, however, provide continuous
data sets for any of the ET-monitoring sites. In 2006, the towers remained stationary at one site in
each of the valleys (SV1 and WRV?2). Four additional towers were monitored in 2007 (Table A-4);
one monitoring location from 2005 (SV 3) was re-equipped, and three sites (SV2b, SNVI, and SNV 2)
were added.

Species composition and percent cover within a 25 m x 25 m plot (size of Landsat satellite image
pixel) at each site were evaluated by Deuvitt et al. (2008). A brief description of the sites monitored
between 2004 and 2007 is presented in Table A-4.

A.1.2.3 Data Collection Methods

Each ET dite is equipped with an automated eddy covariance tower (ET towers), meteorological
station, and groundwater monitor well for collection of ET, precipitation and PET data, and
depth-to-water data, respectively. The ET towers are equipped with a 3D sonic anemometer and an
infrared gas analyzer at a height of 1 m above average plant canopy height, with the exception of the
pasture/grassland site (SV2b) where the height is 1.5 m above the grass. The towers are equipped
with additional sensors to measure temperature, relative humidity, net radiation, rainfall, barometric
pressure, saturated and actual vapor pressure, soil-heat flux, soil temperature, and volumetric water
content. Continuous data are recorded on a IOHz interval (every 10th of a second) with data
downloads occurring on a 2- to 3-week rotation. All sensors are calibrated according to the
manufacturer’s guidelines.

A.1.2.4 Data Reduction Methods

ET rates are based on using the I0Hz measurement data and incorporating a series of post-processing
adjustments to produce 30-minute totals. An ET data quality assurance/quality control flagging
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table A-4
ET-Monitoring Site Information
UTM UTM
Northing Easting Depthto
Station Zone 11 Zone 11 Monitoring Percent | Water
Name (m) (m) Period Vegetation Type Cover (ft bgs)
Predominantly sagebrush, rabbitbrush, and
Sv1 4,294,917 | 719,920 | 2005 to present® | greasewood, minor amounts of shadscale and 27 15
buckwheat
SV2a 4,351,204 | 720,177 2004 to 2005° | Mixed grasses, greasewood, and rabbitbrush 62 shallow
SV2b 4,360,829 | 716,743 2007 to present | Irrigated pasture, with perennial grasses 100 shallow
Sv3 4375912 | 715,857 2007 to present Predominantly greasewood gnd rabbitbrush, minor 32 17
amounts of shadscale and pickleweed
SNV 4.287.266 | 753,182 2007 to present Predominantly greasewood, minor amounts of 62 19
shadscale and sagebrush
SNV2 4325000 | 754,601 2007 to present Mixed community of rabbitbrush, greasewood, 13 30
sagebrush, and shadscale
WRV1 | 4253557 | 670230 2005¢ Predominantly greasewood and sagebrush, minor 62 300
amounts of buckwheat
WRV2 | 4277445 | 665,017 2005 to present Predominantly sagebrush and greasewood, minor 55 19
amounts of shadscale and rabbitbrush
Predominantly greasewood and rabbitbrush, minor
WRV3 | 4,301,044 | 668,300 2005° amounts of sagebrush, shadscale, cactus, and 42 41f
grass

82005 data were collected from 3/31/2005 to 5/26/2005 and 8/18/2005 to 12/22/2005.
bData were collected from 8/18/2004 to 2/15/2005 and 7/7/2005 to 8/18/2005.

‘Data were collected from 4/1/2005 to 5/27/2005 and 8/19/2005 to 9/5/2005.

dData from Moreo et al. (2007).
€Data were collected from 5/27/2005 to 7/17/2005.
Depth to water calculated for the period of 2004 to 2006.

system checks for data spikes and other anomalies by running each 30-minute total through a series of
nine tests. These nine tests include checks on signal resolution, meteorological range of the data
(range of acceptable numbersfor thisfield of data collection), sampling errors, stationarity (statistical
parameters varying in time), and fulfillment of requirements for awell-defined turbulence (needed for
the eddy covariance approach).

A series of gap-filling techniques are employed after the data are visually inspected for any
measurement gaps. Data gaps can occur anywhere from the 30-minute totals up to the yearly totals.

The gap-filling technique employed depends on the magnitude of the missing data. These techniques

include (1) assigning aflat rate from previous literature or (2) using linear regression or an unbiased
average of the available data surrounding the data gap.
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Appendix B
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

B.1.0 SIiMPLIFIED HYDROGEOLOGIC FRAMEWORK
DEVELOPMENT

This appendix contains information used to construct the simplified hydrogeologic framework. This
includes a representation of the surface elevation as well as unit extent and structural contour maps
for all RMUs (Figures B-1 through B-12).
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Extent and Structural Contours of the Upper Valley Fill Regional Modeling Unit
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Extent and Structural Contours of the Cretaceous Plateau Sediments (1) Regional Modeling Unit
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Figure B-4
Extent and Structural Contours of the Cretaceous Plateau Sediments (2) Regional Modeling Unit
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Figure B-5
Extent and Structural Contours of the Upper Aquitard Regional Modeling Unit
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Figure B-6
Extent and Structural Contours of the Upper Carbonate Regional Modeling Unit
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Figure B-7
Extent and Structural Contours of the Lower Carbonate (1) Regional Modeling Unit
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Figure B-8
Extent and Structural Contours of the Lower Carbonate (2) Regional Modeling Unit
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Figure B-9
Extent and Structural Contours of the Lower Carbonate (3) Regional Modeling Unit
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Figure B-10
Extent and Structural Contours of the Basement Rocks (1) Regional Modeling Unit
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

C.1.0 HvYDRAULIC-PROPERTY DATA ANALYSIS

This appendix describes the data analysis efforts conducted to derive estimates of hydraulic properties
for the RMUs of the study area. Descriptions of previous relevant studies, the technical approach,
and the data analysis are presented in this appendix, followed by a summary. The data analysisis
presented in two subsections:. (1) reported aquifer-test data and (2) preliminary SNWA data.

C.1.1 Relevant Studies

The study areafor the Project is largely unpopulated and therefore has not been extensively studied.
This section contains a description of previous site-specific and regional studies that are relevant to
thisinvestigation, followed by a description of the ongoing investigations conducted by SNWA.

C.1.1.1 Previous Site-Specific Studies

Previous investigations conducted within the general study area are termed site-specific and are
summarized below.

C.1.1.1.1 LVVWD Cooperative Water Project Studies

LVVWD published a series of reports in the early to mid 1990s in support of groundwater
applicationsfiled in eastern and central Nevada. The reports document the environmental setting and
hydrology of select basins within the region.

C.1.1.1.2 MX Well Studies

In the late 1970s and early 1980s, hydrogeol ogic investigations were completed for the MX missile-
siting program. The data collected from MX Well Tests under the USAF MX Missile-Siting
Investigation—Water Resources Program are described in reports by Ertec Western, Inc.
(1981 athrough c) and Bunch and Harrill (1984). The area of investigation for this project extends
over Nevada and Utah. A number of wells were constructed and tested in 1980 and 1981 when the
project was stopped. Most tests were single-well constant-rate tests that were conducted in the
valley-fill aguifer with afew tests conducted in the carbonate aquifer.

C.1.1.1.3 Drill-Stem Tests

McKay and Kepper (1988) compiled, reviewed, and analyzed drill-stem test (DST) data collected
from oil and gas wellsin Nevada. Most of the wildcat wells reviewed are in the Railroad Valley and
White River flow systems. McKay and Kepper (1988) calculated transmissivities for 20 wells with
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complete DST records for the carbonate aquifer. They found that DST transmissivity values were
smaller than those derived from aguifer tests by as much as three orders of magnitude.

Since publication of McKay and Kepper (1988), 80 additional DSTs (1987 to 2003) have been
conducted in Nevada. The data from these tests were not compiled or analyzed as part of this study.

C.1.1.1.4 White Pine Power Project

Leeds, Hill and Jewett, Inc., (1981b, 1983) describe well tests conducted as part of the White Pine
Power Project. Aquifer-property data were derived from step-drawdown and pump tests. This study
was conducted in three phases. Severa wells were first installed and tested in the valley-fill and
carbonate aquifers of Spring, Steptoe, and White River valleys. Then, a few more wells were
installed and tested in Spring and Steptoe valleys.

C.1.1.1.5 NDWR Driller’s Logs

The NDWR maintains an online database of driller’s logs for many wellsin Nevada (NDWR, 2004)
and is a source of extensive information. In addition to location and well construction information,
the driller’s logs contain lithology and occasionally specific capacity data.

C.1.1.1.6 Other Site-Specific Studies

Other site-specific studies consist of reports on localized hydrological investigations of Coyote
Spring Valley, Moapa Valley, Lower Meadow Valley Wash, and Garnet Valley. These reportsinclude
dataderived from step-drawdown and constant-rate tests for wells completed in valley-fill, carbonate,
and volcanic rocks.

C.1.1.2 Previous Regional Studies

For the most part, regional data were derived from studies associated with the Death Valley Flow
System. This section briefly describes each of the regional studies.

C.1.1.2.1 Welch et al. (2008)

As part of BARCASS, Welch et al. (2008) derived estimates of hydraulic properties for their study
area from the aquifer-test data set compiled by Belcher et a. (2001) for the DVFS. Welch et al.
(2008) justified the use of DVFS data because of the lack of data specific to their study area and the
similarity between rock types and HGUs within the DVFS.

Welch et al. (2008) grouped the horizontal hydraulic-conductivity data compiled by Belcher et a.
(2001) by HGU and summarized the data statistically. They found that hydraulic-conductivity values
for a given HGU vary by three to nine orders of magnitude and are affected by fracturing and
chemical dissolution, at least for carbonate rocks.
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

C.1.1.2.2 Belcher et al. (2001)

Belcher et al. (2001) compiled an extensive aquifer-property data set from existing databases and the
literature to support the USGS Death Valley Regional Flow System model (Belcher, 2004). Although
most of the data compiled by Belcher et al. (2001) fall within the DVRFS model area, it also includes
some data | ocations outside of the model boundary. The data set includes only “good quality” data as
deemed by the authors of the report. The anayses performed by Belcher et al. (2001) included
subdividing the carbonate aquifer based on rocks with extensive faulting, with or without karst
development, and undisturbed rocks. The results of their analyses showed that faulted rocks had a
geometric mean of the horizontal hydraulic conductivity of approximately 9.84 ft/day, whereas the
undisturbed rocks had a geometric mean of 0.33 ft/day. The conclusion reached from this was that
extensive faulting and karst development significantly increases the hydraulic continuity of the
carbonate aquifers (Belcher et al., 2001).

C.1.1.2.3 NTS Studies

An aquifer-property data set was developed to support an earlier model of the regional groundwater
flow model for the DVFS (IT, 1996), the NTS Regional Model (1T, 1997). This data set contains
much of the regional data available at the time of the study, and each record in the data set was
assigned a qualification flag.

In cooperation with the USGS, the Stoller-Navarro Joint Venture (SNJV) compiled raw slug-test data
previously collected by the USGS for tests conducted on the NTS. SNJV analyzed the data for
environmental restoration studies of the Pahute Mesa underground test area and published the results
in areport discussing hydrologic data for Pahute Mesa (SNJV, 2004c¢).

Other NTS data are presented in hydrologic data-interpretation reports for wells or well clustersin the
NTS and its vicinity conducted as part of the DOE Environmental Restoration Program (IT, 2002a
through i; SNJV 20044, b, d, and €).

C.1.1.2.4 Other Regional Studies

Other studies conducted within the region include data from the Nye County Early Warning Drilling
Program (Questa Engineering, 1999a through ¢, 2000a and b, 2001, 2002a through c, and 2003).
These studies include step-drawdown, constant-rate, and flow-logging tests for wells and
multiple-well aquifer tests.

C.1.1.2.5 Ongoing SNWA Studies

As part of the Project, SNWA has been installing and testing several monitor and test wells within the
study area (Appendix A). Aquifer tests have been conducted as part of the hydrologic data collection
effort for some of these wells. A summary of the aquifer test results are presented in
Section C.1.3.6.2.
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C.1.2 Technical Approach

The role of aquifer properties, the types of data, and the objectives and approach for the hydraulic-
property data analysis are described in this section.

C.1.2.1 Role of Aquifer Properties

Hydraulic properties include permeability and storage properties of geologic units. Permeability
properties quantify the ability of fluids to flow through geologic media. Storage properties, as their
name indicates, provide a measure of the storage capabilities of the geologic media.

In general, quantification of the permeability and storage properties of the geologic media is needed
for severa reasons: (1) it facilitates comparison of water-bearing geologic units; (2) it facilitates the
identification of aquifers versus confining units; and (3) it is arequirement in flux calculations using
simple analytical or complex numerical models of groundwater flow.

The aquifer-property data were used to support the development of a 3D numerical groundwater flow
model by providing initial estimates and ranges of parameters. The numerical model was used to
predict the potential effects of pumping from proposed production wells in the project basins
(Figure 1-2).

C.1.2.2 Data Types

Data types of interest include (1) hydraulic properties, such as permeability and storage, derived
directly from field or laboratory tests and (2) other types of data that may indirectly be used to
estimate hydraulic properties or provide comparative estimates.

Permeability properties may be expressed as intrinsic permeability, hydraulic conductivity, or
transmissivity. Intrinsic permesability is a measure of the ability of a geologic unit to transmit fluids
under a hydraulic or potential gradient and is independent of the resident fluid properties (Fetter,
1988). This property is usually applied in the evaluation of oil and gas wells, where multiple fluids
are usualy present. Hydraulic conductivity is a measure of the ability of a geologic unit to transmit
water and is a function of both the medium and the fluid (Fetter, 1988). Transmissivity is the rate at
which water is transmitted through a unit width of an aguifer or confining bed under a unit hydraulic
gradient and is a product of hydraulic conductivity and the thickness of the water-bearing geologic
unit (Fetter, 1988). Hydraulic conductivity may vary with direction horizontally and vertically. Such
variability is measured via anisotropy factors. Specific capacity is an expression of the productivity
of awell that represents the well yield per unit of drawdown (Fetter, 1988) and may be used to derive
estimates of transmissivity.

Storage properties include specific storage, storativity and specific yield. The storativity of an
aquifer, also known as storage coefficient, is the volume of water that an aquifer releases from or
takes into storage per unit surface area of the aguifer per unit change in head (Fetter, 1988). Specific
storage may be defined as the storativity per unit thickness. The specific yield is the ratio of water a
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rock or soil will yield by gravity drainage to the volume of rock or soil. The retained portion is called
specific retention (Fetter, 1988).

Other types of data that may be used to estimate hydraulic properties are texture and permeability
indicator information. Lithologic logs may be used to develop models of the spatial variability of
texture within geologic units. These models may, in turn, be used to derive estimates of hydraulic
conductivity. Permeability indicators are useful for carbonate aquifers. Such factors include
geomorphic landforms, groundwater-level fluctuations, and variability of groundwater chemistry,
among other factors (Rovey, 1994). Permeability indicators will not be discussed any further in this
report.

Therefore, the types of data that may be used to estimate hydraulic properties are:

Hydraulic conductivity

Anisotropy ratios

Hydraulic-conductivity variation with depth
Transmissivity

Specific capacity

Storage coefficient/specific storage
Specificyield

Spatially, hydraulic conductivity is log-normally distributed (Freeze and Cherry, 1979). The spatid
distribution of transmissivity also follows a log-normal probability distribution. Anisotropy ratios
and storage properties were assumed to be normally distributed for this study.

C.1.2.3 Objectives
The primary objectives for the hydraulic-property assessment were to:
1. Analyzethe reported aguifer-testing data available for the study area and vicinity to:

- Derive arange of hydraulic conductivity for each RMU.

- Estimate horizontal-to-vertical anisotropy factors.

- Derive arange of specific-yield values for all RMUs under unconfined conditions.

- Estimate the range of specific storage for all RMUs under confined conditions.

- Derive a relationship of hydraulic conductivity with depth for each RMU (aquifer units

only).

2. Present preliminary aquifer-property data derived from SNWA tests conducted in the project
basins.

C.1.2.4 Approach

The approach for this analysisis to compile the availabl e existing aquifer-property information for the
region. Data are handled and used differently depending on the process used to derive them.
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Reported data derived from previous field and laboratory tests were compiled and reduced to a
unified structure, ultimately creating a database. The database could then be queried based on RMU
and statistically analyzed to obtain estimates of the range of hydraulic conductivity, specific yield,
and specific storage by RMU. For hydraulic conductivity, the statistics were performed on the Log;,
of the K values.

The partial results of the ongoing SNWA field data collection activities within the study area are
reported but not incorporated in the data analysis because they are preliminary. They are presented
separately and are to be used only as additional guidesin the interpretation of the hydraulic properties
of the RMUs at the local scale.

C.1.3 Reported Testing Data

The types of tests, the sources of data, the data reduction, the quality evaluation, and the analysis of
the reported testing data are described in this section.

C.1.3.1 Type of Tests

Types of tests conducted to derive measurements of aquifer hydraulic properties include those that
estimate hydraulic properties directly and those that estimate hydraulic properties in a quantitative or
gualitative manner using other related data.

Methods of direct aquifer-property measurement include:

Specific-capacity tests
Constant-rate pumping tests
Slug tests

Packer tests
Step-drawdown tests
Drill-stem tests
Permeameter tests

Specific capacity is typically calculated from short-duration pumping tests conducted immediately
following drilling and is occasionally reported on the driller’s log as the pumping rate and the total
drawdown. Specific capacity may then be calculated as the ratio of the pumping rate to total
drawdown. Estimates of transmissivity may be derived from specific-capacity values.

Constant-rate tests are most commonly conducted to estimate transmissivity or hydraulic
conductivity and storage properties (storage coefficient or specific yield). Tests may include asingle
well or multiple wells and usually consist of a pumping phase and a recovery phase. Note that
estimates of storage properties that are representative of the tested portion of the aguifer may be
obtained only from the time-drawdown data collected from observation wells.

The pumping well is typically pumped at a constant rate for a period ranging from severa hours to
severa days. The pumping phase involves measuring changes in water levels in the pumping well
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and observation wells (if any) while the well isbeing pumped. The recovery phase measures changes
in water levels after pumping is stopped until the well recoversto pre-pumping conditions.

The resulting time-drawdown data are analyzed to derive estimates of transmissivity or hydraulic
conductivity and storage properties if the test includes observation wells. The time-drawdown (or
displacement) data are analyzed to derive estimates of transmissivity and storage properties.

Many methods are available for analyzing constant-rate test data in unconfined, confined, leaky, and
fractured aquifers. These methods have been implemented in software packages, such as
AQTESOLV. Anaysis methods for constant-rate test data include Theis (1935), Thels residual
drawdown (Theis, 1935), Cooper-Jacob (Cooper and Jacob, 1946), Hantush-Jacob (Hantush and
Jacob, 1955), Hantush (1960, 1962), Papadopulos-Cooper (Papadopulos and Cooper, 1967),
Neuman-Witherspoon (Neuman and Witherspoon, 1969), Neuman (1974), Streltsova (1974), and
Moench (1984, 1985, 1993, 1996, 1997) methods.

Slug tests are usually conducted as single-well tests and provide estimates of hydraulic conductivity.
During the process, aslug of water is either added to or removed from the well, and changes in water
level are measured throughout the test. The resulting data are analyzed using one of the available data
analysis methods. Confined-aquifer analysis methods include the Hvordev (1951), Cooper et al.
(1967), Bouwer and Rice (1976), and Hyder et al. (1994) methods. Unconfined-aquifer analysis
methods include the Hvorslev (1951), Bouwer and Rice (1976), and Hyder et al. (1994) methods.

A slug test can also be conducted within a specific depth interval by isolating a section of the well
using single or double packer(s). Changes in pressure are recorded using a transducer and converted
to changes in hydraulic head or water level. These data are analyzed to derive estimates of
transmissivity or hydraulic conductivity.

Step-drawdown tests are commonly conducted prior to constant-rate pumping tests. They are used to
estimate well efficiency and optimal pumping rate. They are usually conducted with three to five
consecutive short-duration pumped rates and provide estimates of the well’s specific capacity, which
can be used to derive an estimate of transmissivity. Step-drawdown-test data may be analyzed using
the Theis (1935) step-test method.

DSTs are conducted to determine the potential of a producing oil or gas formation. The DST tool is
placed on the bottom of the drill stem and lowered into the hole. Weight is applied to the tool to
expand a hard rubber sealer (packer). To start the test, the tool ports are opened to the formation. A
transducer records pressure versus time during pressure buildup. The time-pressure data may be
analyzed to derive an estimate of transmissivity.

Permeameter tests are conducted on rock cores in the laboratory. A fluid (gas or liquid) is injected
into the core at various pressures, and the differential pressure and flow rates are recorded. This
information isthen used in a Darcy’s equation to calcul ate the permeability of the core sample. These
tests provide small-scale estimates of permeability or hydraulic conductivity.
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C.1.3.2 Data Sources

Data sources of aquifer-property data were subdivided into two main categories. (1) site-specific-
testing data sources and (2) regional-testing data sources.

C.1.3.2.1 Site-Specific-Testing Data Sources

Site-specific-testing data sources are defined as reports or databases containing data for basins within
the study area (Figure 1-1).

The main site-specific data sources cover more than one basin and are:

MX WEell tests (Ertec Western, Inc. reports, 1981 a through c; Bunch and Harrill, 1984)
Driller’'slogs (NDWR, 2004; UDWR, 2005)

Drill-stem tests (McKay and Kepper, 1988)

White Pine Power Project well tests (Leeds, Hill, and Jewett, Inc., 1981a and b, 1983)

Other site-specific data sources cover a single basin located within the study area and are:

Coyote Spring Valley (Berger et a., 1988; Johnson et al., 1998; Converse, 2002)
Three Lakes Valley South (Converse, 1997, 1998a and b)

Dry Lake Valley (SRK, 2001; Johnson, 2002)

Meadow Valey (URS, 2001)

Moapa Valley (Mifflin & Associates, 2001)

Tule Desert (HydroSystems, 2002)

C.1.3.2.2 Regional-Testing Data Sources

Regional-testing data sources are defined as reports or databases containing data for regionsincluding
or located near the study area.

The main sources of regional datainclude:

DVRFS Model data (Belcher et al., 2001)
NTS Regional Model data (IT, 1996)
Slug-test data (SNJV, 2004c)

Other sources of regional data are asfollows:

IT (2002 athrough i)

SNJV (20044, b, d, and €)

Questa Engineering (1999 a through ¢, 2000a and b, 2001, 2002a through c, 2003)
Maurer et a. (2004)
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

C.1.3.3 Data Reduction

Data reduction for the hydraulic-property data set began with the calculation of hydraulic-
conductivity estimates for the NDWR (2004) and UDWR (2005) specific-capacity data sets. All of
the individual data sets were then formatted into the same fields of information, and all values were
converted to a standard set of units. This formatting and standardization process included mapping
the hydrogeologic or lithologic information to an RMU (Table 4-1). Formatting also involved the
standardization of site names and the creation of a sSite-location table for unique locations. The
individual data sets were then combined, and duplicate records were identified, flagged, and removed
from the well-testing data set. Hydraulic conductivity was calculated when test interval thicknesses
were available for transmissivity values. Finally, an aquifer-property database was constructed from
the resulting location and property tables (SNWA, 2006). Figure C-1 shows the locations of aquifer-
test data within the aquifer-property database.

C.1.3.4 Data-Quality Evaluation

The record documentation and the test type and scale were factors considered in the data-quality
evaluation of each record of the combined data set as described in this section.

Record documentation includes the documentation of the test itself and the data analysis used to
derive the aguifer properties. A data documentation evaluation flag was applied to each record in the
well-testing data set. The levels of documentation are described below:

 Level 1. Data containing detailed information about how the properties were determined,
including information on test type, dates of testing, pumping or injection rates, radius or
interwell distances, transmissive intervals, lithologic or stratigraphic descriptions, analytical
method, and source. Thislevel alsoincludesall of the data from Belcher et al. (2001).

* Level 2. Datacontaining all of the propertieslistedin Level 1 but missing the dates of testing.

* Level 3: Datacontaining most of the propertieslisted in Level 1 but missing multiple fields of
relevant information, including dates, average pumping or injection rates, or radius or
interwell distances.

* Level 4: Datamissing information on analytical method, test types, or transmissive intervals.
Thislevel aso includes NDWR and Utah Division of Water Rights Driller’s Log information.

* Level 5: Data missing hydraulic-property values or the information required to calculate the
values.

The type and scale of the test are extremely important when assessing the quality of a test for the
intended purpose, especially for fractured HGUs. The following test types may be grouped according
to their scales from largest to smallest: (1) multiple-well, constant-rate pumping tests; (2) single-well,
constant-rate pumping tests; (3) specific-capacity and DSTs; (4) slug, packer, and step-drawdown
tests; and (5) permeameter tests.
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

C.1.3.5 Reported Test Data Limitations
General data limitations include:

Limited data in project basins

Limited tests from deep wells

Limited number of multiple-well tests

Limited number of long-term pumping tests
Assumed thickness of the open interval
Analytical methods based on aquifer assumptions

In addition, a positive bias for the average hydraulic conductivity is often observed because many
wells are screened preferentially across more productive zones (Belcher et al., 2002).

C.1.3.6 Data Analysis

The analysis of the reported testing data is subdivided into four parts. (1) analysis of lithologic data
from driller’s logs, (2) statistical analysis of hydraulic properties, (3) analysis of hydraulic
conductivity with depth, and (4) analysis of hydraulic conductivity versus depth.

C.1.3.6.1 Analysis of Lithologic Data

An attempt was made to use the available lithologic data contained in driller’s logs to derive a spatial
distribution of hydraulic conductivity using a method that converts lithologic datainto texture, which
is then converted to hydraulic conductivity. Driller’slogs for wells drilled in the UVF RMU and for
which lithologic data are available are shown in Figure C-2.

This texture analysis method was used by Burrow et al. (2004) for the Modesto, California, area. As
part of the Modesto study, approximately 3,500 well logs were compiled for an area of approximately
900 mi2. Geostatistical methods were then applied to develop a spatia correlation model of the
percentage of coarse-grained texture. This model was created by converting the lithologic
information in driller’s logs into a bivariate distribution of texture, where a value of 100 percent was
assigned to coarse-grained lithologies and O percent was assigned to fine-grained lithologies. The
1-m data were then re-sampled, and a 3D krigged model was created to show the percentage of
coarse-grained material. This model was then used as a surrogate for hydraulic conductivity and
demonstrated that, in the Modesto area, the composition of aluvial materias is significantly
heterogeneous, and therefore the hydraulic conductivities would be heterogeneous.

A similar methodol ogy was attempted with 964 driller’slogs within the northern groundwater project
study area as part of this study. The results of this work indicated that there were not enough data
within the study area for this method to be useful. The spatial distribution of data was not sufficient
for contouring, and there was a general lack of data within the project basins. The other problem
encountered was that the valley fill in many of the study area basinsis several thousands of feet thick,
while the wells are generaly drilled to the water table or slightly below. This resultsin a deficiency
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

of textural datafor all but the uppermost aluvium. Therefore, this method was not used to determine
hydraulic properties for this study.

C.1.3.6.2 Statistical Analysis of Hydraulic Properties

The data processing methodology and estimates of aquifer properties derived from the reported
testing data are presented in this section. The data analysis does not include the preliminary results
for the new SNWA monitor and test wells.

C.1.3.6.2.1 Methodology

Data analysis began with querying the aquifer-property database and extracting hydraulic-property
information for all eight RMUs. The data were analyzed using two subsets of the data set, hydraulic
conductivities and aguifer-storage properties, queried from the database:

The first subset was focused on hydraulic conductivity, as this property may be derived from all test
types. However, this data subset was also used to derive estimates of other properties. The datawere
grouped by test type and quantity of available information. While duplicate records were removed
before entry into the database, it was still possible to have multiple unique results for the same well
interval. To keep these instances from creating a statistical bias, either a preferred value was accepted
or the geometric mean of the values for the interval was calculated and applied. The data from
Belcher et a. (2001) were considered to be high reliability and therefore were considered a preferred
value. The higher weight applied to the Belcher et al. (2001) data stemsfrom their re-analysis of tests
before acceptance into their own data set. This processing reduced the data set to a set of records,
each representing a single tested interval in a given well. Vaues of hydraulic conductivities were
then transformed to Log,, values based on the assumption of a log-normal distribution for this
property. Descriptive statistics, including the geometric means, standard deviations, minimum, and
maximum, were calculated using the Log,, hydraulic-conductivity values for each RMU and
test-type grouping. This reduced data set was also used to (1) conduct the analysis of the relationship
of horizontal hydraulic conductivity with depth, (2) extract and summarize the few values of vertical
anisotropy that are available, and (3) conduct a preliminary statistical analysis of the storativity and
specific-yield data.

The estimates of storativity derived from the first data subset may not be representative of the aquifer
units, as some of the records include estimates obtained from single-well aquifer tests. Aquifer-
storage properties are most representative of the aquifer when they are derived from time-drawdown
data collected from observation wellsin multiple-well constant-rate aquifer tests. Thus, a second data
subset was derived from the first subset. Because aquifer-storage properties are only needed for the
agquifer RMUs, i.e, the UVF, LVF, and UC/LC RMUSs, records for these RMUs corresponding to
multiple-well constant-rate agquifer tests were extracted from the first data subset. This data subset
was used to derive estimates of specific yield and specific storage. Because estimates of
transmissivities in this data subset are aso believed to be more representative of the tested aquifers,
they were also statistically summarized from this data subset. Note that data records containing
specific-yield values are identical in both data subsets because specific yield was only reported for
observation wells.
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C.1.3.6.2.2 Results

The results of the hydraulic-property data analysis are presented in this subsection. Statistics derived
for horizontal hydraulic conductivity from the first data subset are presented in Table C-1 according
to the type of test used to derive the estimates. The results of the analysis conducted using the second
data subset are summarized in Table C-2. Analysisresults for vertical anisotropy, specific yield, and
storativity derived from the first data subset are presented by RMU in the following sections.

Table C-1
Hydraulic-Conductivity Estimates
Log,o Hydraulic Conductivity
(ft/day)
Standard Number of
Test Type Mean Deviation | Minimum Maximum Analyses

Upper Valley Fill (UVF RMU)
Constant-Rate Test 1.07 1.15 -3.71 3.56 132
Specific-Capacity Driller's Logs 1.11 0.81 -1.76 3.35 850
Step-Drawdown\Swabbing Recovery 0.49 0.90 -3.51 1.59 26
Slug Test -1.05 1.56 -3.69 1.47 19
Bailing -0.45 0.08 -0.51 -0.39 2

Lower Valley Fill (LVF RMU)
Constant-Rate Test 0.29 1.04 -2.62 2.53 136
Drill-Stem Tests -1.99 0.62 -2.79 -1.46 5
Slug Test -2.10 1.07 -6.31 1.11 958
Borehole Flow Logging 1.05 1.12 -1.67 2.93 28
Laboratory -4.40 1.56 -6.61 -0.17 118

Intrusive Rock (PLUT RMU)
All Test Types | 150 | 139 | 273 | 067 | 7

Cretaceous to Triassic Siliciclastic Rock (Kps RMU)
Drill-Stem Tests | 220 | o8 | 320 | -004 | 16
Mississippian Siliciclastic Rock (UA RMU)
Constant-Rate Test -1.24 1.52 -2.96 1.17 6
Drill-Stem Tests -2.60 0.67 -3.07 -2.13 2
Slug Test -1.16 0.95 -2.14 0.10 5
Borehole Flow Logging -2.25 0.46 -3.07 -1.24 32
Carbonate Rock (UC/LC RMU)
Constant-Rate Test 0.73 1.24 -1.56 3.50 89
Step-Drawdown\Swabbing Recovery 1.61 1.65 -1.00 3.71 7
Drill-Stem Tests -1.13 1.65 -5.03 1.26 17
Slug Test -0.17 1.08 -1.25 3.00 21
Bailing -0.68 0.25 -0.86 -0.50 2
Borehole Flow Logging 2.39 0.59 1.38 3.63 22
C-14 Appendix C
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table C-2
Transmissivity, Specific-Yield, and Specific-Storage Values for Aquifer RMUs

Aquifer Property Mean Minimum Maximum Number of

RMU Name and Unit Value Value Value Data points
UVF T (ft?/d) 10,801 39 72,719 44
UVF T (ft?/d)2 5,039 39 72,719 44
UVF Sy 0.0424 0.0004 0.2870 17
UVF Ss (1/ft) 1.21E-04 1.72E-07 3.38E-03 36
LVF T (ft?/d) 8,711 43 34,432 1
LVF T (ft?/d)? 2,547 43 34,432 1
LVF Sy 0.0023 0.0020 0.0030 3
LVF Ss (1/ft) 6.75E-06 1.03E-07 3.44E-05 10
UCILC T (ft?/d) 291,071 963 1,000,000 4
UCILC T (ft?/d)? 48,809 963 1,000,000 4
UCILC Sy 0.0160 0.0012 0.0309 2
UCILC Ss (1/ft) 8.26E-06 4.67E-07 1.24E-05 3

#Values derived using Log,, values of transmissivity.

UVF RMU

Data available for the UVF RMU includes specific-capacity data and results of aquifer tests.
Figure C-2 shows the distribution for driller’s logs for which specific-capacity data are available, and
Figure C-3 shows the distribution of all other test typesin the UVF. Table C-1 contains a statistical
summary for the horizontal hydraulic conductivity of the UVF. Table C-2 contains statistical
summaries for the transmissivity, specific yield, and specific storage of the UVF.

Compared to the other RMUs, more site-specific hydraulic-property data are available for the UVF
RMU. However, the available data (first data subset) are very spatialy limited. Tested intervals for
the constant-rate data include depths as great as 3,676 ft bgs, however, amgjority of the tested depths
were less than 1,000 ft deep. Based on 132 constant-rate tests, the mean K is 11.7 ft/day with arange
of 0.0002 to 3,636 ft/day. Specific-yield estimates were available for 18 different wells or intervals
for the UVF. Specific-yield estimates ranged from 0.0004 to 0.287 with an arithmetic mean of 0.043
after removing the suspect value of 0.0004. Belcher et al. (2001) removed the 0.0004 value from
their statistics stating that the method used to derive it was not applicable. Storativity estimates were
available for 58 different wells or intervals for the UVF and ranged from 1.04 x 10 to 0.7 with an
arithmetic mean of 0.017. There are threetestsin the UVF where the vertical anisotropy of hydraulic
conductivity was measured. The vertical anisotropy factor, expressed as the horizontal-to-vertical
hydraulic-conductivity ratio, ranges between 3 and 333.
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

LVF RMU

Most of the LVF data locations are clustered around the NTS and Yucca Mountain, athough some
data are within Lincoln and northern Nye counties (Figure C-4). Table C-1 contains a statistical
summary for the horizontal hydraulic conductivity of the LVF. Table C-2 contains statistical
summaries for the transmissivity, specific yield, and specific storage of the LVF.

Tested intervals for the constant-rate test data include depths as great as 13,689 ft bgs. Analyses of
constant-rate test data yielded a mean horizontal hydraulic conductivity of 1.95 ft/day and a range of
0.002 to 339 ft/day. Seven tests to measure the vertical-to-horizontal anisotropy within this RMU
were conducted in two boreholes completed in the LVF. The anisotropy factors (horizontal-to-
vertical hydraulic-conductivity ratios) range from 0.5 to 40. Specific-yield estimates were available
for 10 intervals within two wells for the LVF. Specific-yield estimates ranged from 0.001 to 0.2 with
an arithmetic mean of 0.032. Storativity estimates were available for 308 intervals within 35 wells
for the LVF. Storativity estimates ranged from 0.00001 to 0.04 with an arithmetic mean of 0.000665.

PLUT RMU

Very few aguifer tests have been performed in this RMU, and the data in the aquifer-property
database come from tests performed at the NTS and at well UCE-1 in northern Nye County.
Table C-1 contains a statistical summary for the horizontal hydraulic conductivity of the PLUT.
Because there are only seven measurements, they were all incorporated as a single statistical output.
The derived mean horizontal hydraulic conductivity is 0.032 ft/day. No information is available for
vertical anisotropy, specific yield, or specific storage for the PLUT.

Kps RMU

Table C-1 contains a statistical summary for the horizontal hydraulic conductivity of the Kps. Only
one DST in Virgin River Valey (HA 222) was conducted for the Kps RMU (Figures B-3 and B-4,
Appendix B). Sixteen other tests were conducted in south-central Utah in sedimentary rocks of the
Colorado Plateau. The Colorado Plateau data should be transferable to the study area because both
areas contain some of the same formations with similar lithologies. The mean vaue of horizontal
hydraulic conductivity is 0.006 ft/day. No data are available for vertical anisotropy, specific yield, or
storativity for the Kps.

UA RMU

Most of the aquifer-property data for the UA (Figure C-5) come from tests conducted on the NTS,
with afew additional tests in northern Nye and White Pine counties. Table C-1 contains a statistical
summary for the horizontal hydraulic conductivity of the UA. The mean value of horizontal
hydraulic conductivity derived from these data is 0.058 ft/day. No information is available for
conductivity anisotropy, specific yield, or storativity for the UA.

LC and UC RMUs

The LC and UC have the second greatest number of site-specific test information with aquifer test
data in northern Nye, Lincoln, and White Pine counties and the southern part of the study area
(Figure C-6). Table C-1 contains a statistical summary for the horizontal hydraulic conductivity of
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

the LC and UC RMUSs. Table C-2 contains statistical summaries for the transmissivity, specific yield,
and specific storage of the UC and LC RMUs.

Tested intervals for the constant-rate data include depths as great as 5,923 ft bgs. The mean value of
horizontal hydraulic conductivity derived from these data is 5.37 ft/day with a range of 0.028 to
3,158 ft/day. There are two tests in the carbonate rocks where the horizontal-to-vertical anisotropy
was measured. These ratios range from 2 and 143. Specific-yield estimates were available for two
wellsin the UC and LC and were 0.001 and 0.031. There are 10 analyses of storativity for the UC
and LC with arange of 1.7 x 10° to 8.14 x 10° and an arithmetic mean of 1.68 x 103, Therelatively
large range of transmissivity listed in Table C-2 is probably more representative of faults, as the few
data records were obtained from aquifer tests conducted in fault zones.

BASE RMU
No dataexist in the aquifer-property database for the BASE unit.

C.1.3.6.3 Analysis of Hydraulic Conductivity with Depth

In theory, rock permeability decreases with depth resulting from the increasing pressure exerted by
the overburden. In reality, many other factors also influence rock permeability. Nonetheless, as data
are usually lacking for large depths, many studies attempted to define a relationship between
permeability (or hydraulic conductivity) and depth. In this section, a literature review of selected
studiesis presented, followed by the analysis of the testing data versus depth.

C.1.3.6.3.1 Literature Review

The variability of permeability (or hydraulic conductivity) with depth has been studied for various
reasons, including understanding the degassing of the Earth, locating and extracting oil, and modeling
groundwater flow in the upper crust of the earth. Summaries of selected studies conducted by
Ingebritsen and Manning (1999), Saar and Manga (2004), Bedinger et al. (1989), IT (1996, 1997),
D’Agneseet a. (1997), Belcher et a. (2001), Belcher (2004), and SNJV (2008) are presented.

Some of the studies were performed using metric units. For consistency with the author’s reports, the
units will be left in the metric system. To convert from meters to feet, divide the value in meters by
0.3048 to obtain feet.

Ingebritsen and Manning (1999)

To understand the degassing of the Earth, Ingebritsen and Manning (1999) derived the following
relationship between the permeability of the continental crust and depth, using geothermal data and
calculated fluid flux during metamorphism:

Logk = 143.2Log z (Eq. C-1)
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where,

k
z

Permeability (m?)
Depth below ground surface (km)

At crustal depths greater than about 5 km, the relationship was mainly derived from data from
prograde metamorphic systems. Therefore, the relationship is applicable to orogenic belts where the
Earth’s crust is undergoing thickening and/or heating.

Saar and Manga (2004)

Using data from the Oregon Cascades, Saar and Manga (2004) studied the decrease in permeability
with depth. They used four methods, each of which is applicable to a different depth scale:

* For depths of less than 0.1 km, they used spring discharge models to estimate horizontal
permeabilities.

* For depths of lessthan 1 km, they used simulations of coupled heat and groundwater flow to
estimate horizontal and vertical permeabilities.

» For depths of less than 5 km, they derived estimates of vertical permeability from statistical
investigations of earthquakes believed to be triggered by groundwater recharge.

e For depths of less than 15 km, they derived estimates of vertica permeability from
considerations of magma intrusion rates and water devolatilization.

Saar and Manga (2004) found that for depths greater than 0.8 km, their results are smilar to the
power law relationship derived by Ingebritsen and Manning (1999) Equation C-1. However, for
depths shallower than or equal to 0.8 km and up to 2 km, Saar and Manga (2004) defined the
following relationship:

k = 5x10 2 x 0% (Eg. C-2)
where,
Kk = Permeability (m?)
z = Depth below ground surface (km)

Saar and Manga (2004) found that this relationship fits the data better than the relationship devel oped
by Ingebritsen and Manning (1999). In addition, their relationship provided estimates of permeability
for near-surface and zero depths. The two relationships, Equation C-1 and Equation C-2, are
consistent at a depth of 0.8 km, yielding a smooth transition between the two.
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Bedinger et al. (1989)

In support of high-level radioactive-waste isolation studies, Bedinger et a. (1989) evaluated the
hydraulic properties of rocks in the Basin and Range Province. For crystaline rocks below the
weathered horizon, they found that permeability data from a single borehole do not usually display a
consistent decrease with depth. However, they reported that in larger data sets, permeability values
collected at depths of less than 1,000 m display a decrease with depth. Furthermore, they reported
that the decrease in permeability is apparently greater for depths above 300 m than for larger depths.
Bedinger et al. (1989) also derived distributions of hydraulic conductivity for the HGUs present in the
region. Their distribution of hydraulic conductivity accounts for variations in rock properties caused
by depth and degree of faulting.

IT Corporation (1996 and 1997)

As part of the development of the NTS regional model, IT (1996, 1997) used the data available at the
time to derive relationships between hydraulic conductivity and depth to help estimate the total depth
of the flow system and the hydraulic conductivities of the deeper units. A relationship was devel oped
for each of the mgjor aquifers: the Alluvia Aquifer, the Volcanic Aquifer, and the Lower Carbonate
Aquifer. The relationships represent the decreasing linear trends observed in the logarithm of
hydraulic conductivity with increasing depth. The relationships, therefore, exhibit an exponential
decrease of hydraulic conductivity with depth and are provided by the following equation:

—Dd
Kaepth = Kp(10 ™) (Eq. C-3)

where,

Keeptn = Horizontal hydraulic conductivity at specified depth
Horizontal hydraulic conductivity at land surface

Decay coefficient (calculated from linear regression)
Depth from land surface

K
D
d

The rate of decrease of K with depth is controlled by the decay coefficient. The values of the decay
coefficient for the three aquifers are provided in Table C-3.

Table C-3
Hydraulic-Conductivity Decay Coefficients with Depth

Mean Decay Mean K at

Coefficient Land Surface

Aquifer (1/day) (m/day)

Alluvial Aquifer 0.00563 21.18
Carbonate Aquifer 0.00102 6.76
Volcanic Aquifer 0.00256 7.75

Source: DOE (1997)
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D’Agnese et al. (1997)

D’Agnese et al. (1997) developed a groundwater flow model for the DVFS. They used the findings
of Bedinger et a. (1989) to incorporate a decrease in the hydraulic conductivity between depths of
300 to 1,000 m. Except in regiona fault zones, they assumed that at depths greater than 1,000 m,
permeability is probably representative of the rock matrix. At depths greater than 5,000 m, they
assumed that faults and fractures are closed because of the overburden pressure (D’ Agnese et al.,
1997).

Belcher et al. (2001)

In support of the DVRFS model, Belcher et a. (2001) examined the relationship between hydraulic
conductivity and depth for the HGUs of the Death Valley region. Similar to IT (1996), they found
that the best correlation is provided by the log-transformed hydraulic-conductivity estimates versus
the nontransformed depth values.

To evaluate the relative importance of HGUs and depth changes in the variations of hydraulic
conductivity, they initially combined al data into a single data set. Using Analysis of Covariance
(ANCOVA), they found that both depth and HGU are important factors at the same probability level
of 0.025. Then they subdivided the data set by HGU and regressed each of the 15 data subsets
separately (one for each HGU). Results from the ANCOVA showed a significant relationship
between hydraulic conductivity and depth. The probability level was 0.025 for five of the HGUS,
including the younger and older aluvial aquifers and the upper and lower carbonate aquifers.
Belcher et a. (2001) observed that despite the relatively strong relationship with depth, hydraulic
conductivity can greatly vary at any given depth. The variations are probably caused by factors other
than depth, such as bedding, heterogeneity, or structural features. Belcher et al. (2001) also attributed
some of the decreasing trend in hydraulic conductivity with depth to the process of deriving hydraulic
conductivities from transmissivity values.

Belcher (2004)

Belcher (2004) developed the DVRFS model using MODFLOW-2000 where the K versus depth
relationship was programmed into the hydrogeol ogic unit flow module of the program.

Several groundwater flow models developed by the DOE for the NTS and/or the Yucca Mountain
Project used a hydraulic conductivity versus depth relationship of the form:

Log K = Ad+Log K, (Eq. C-4)
where,
K = Hydraulic conductivity at depth d
Ko = Hydraulic conductivity projected to areference surface
A = Depth-dependence coefficient, calculated from linear regression
d = Depth below the reference surface
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SNJV (2008)

To address concerns about the apparent low correlation between hydraulic conductivity and depth
previously derived from the available data (IT, 1996, 1997), SNJV (2008) developed an alternate
method of data evaluation.

SNJV (2008) recognized that the variation of hydraulic conductivity within formations is due to two
factors. natural variability and the effect of the overburden pressure (depth). The previous method
(regression of Log,o[K] versus depth) lumps the two factors to yield a measure of the overall
variability. In the aternate method, after the regression is conducted, the derived equations are used
to calculate hydraulic conductivity at the surface (K,) for each data point. The resulting data set is
then used to analyze the spatial variability of hydraulic conductivity.

The HGUs were subdivided into two groups based on the effect of increasing overburden pressure on
the formations:

* Brittle, fractured rocks

- Granite Confining Unit (GCU)

- LavaFlow Aquifer (LFA)

- Lower Carbonate Aquifer (LCA/LCA3)
- Lower Clastic Confining Unit (LCCU)
- Upper Clastic Confining Unit (UCCU)
- Welded Tuff Aquifer (WTA)

* Ductile, porous formations

- Alluvia Aquifer (AA)

- Older Alluvial Aquifer (OAA)
- PlayaConfining Unit (PCU)

- Tuff-Confining Unit (TCU)

For the brittle group, the overburden pressure reduces fracture apertures. For the ductile group, the
overburden pressure increases consolidation. The results of the linear regressions of Log,y(K) versus
depth, including the 95 percent confidence bounds, are shown on Figures C-7 and C-8. Both linear
fits yielded the same correlation coefficient of -0.42. The probability distributions of al hydraulic
conductivity values and of the hydraulic conductivity at the surface (K,) are represented by
cumulative density functions (CDFs) in Figures C-7 and C-8.

C.1.3.6.4 Analysis of Hydraulic Conductivity versus Depth

For this study, the relationship of hydraulic conductivity and depth was analyzed using the data within
the aquifer-property database. The hydraulic-conductivity values were queried from the database and
separated by RMU and test type. The hydraulic conductivities were then converted to Log,, and
plotted against the midpoint of the depth interval they represent. Three plots were created to display
the Log,(K) for the LC, LVF, and UVF RMUs (Figures C-9, C-10, and C-11). A linear trend line
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Hydraulic Conductivity versus Depth for the UVF

was fitted to the constant-rate data for each of the RMUs, and the equation of the line was displayed
on the plot. Each of the plots shows a decrease in K with depth, but with a large scatter in the data.
The derived correlation coefficients between K and depth are 0.40 for the LC, 0.52 for the LVF, and
0.65 for the UVF. Although the results of this analysis show that some correlation exists between K
and depth, the relationships are considered uncertain because of the large data scatter as well as the
decrease in data with increasing depth.

C.1.4 Data from Ongoing SNWA Field Activities

This section contains a summary of the preliminary results obtained from aquifer testing at SNWA
wells 184W101, 184W103, 184W105, SPR7005X, SPR7007X, SPR7008X, and SPR7023I. Results
for CAV6002X are till pending. The location of each test site is presented in Figure A-1
(Appendix A). The carbonate-aquifer tests provided localized short-term results, which are
consistent with increased formation hydraulic conductivity related to the fault structures and damage
zones observed in carbonate aquifers compared with locations with limited fault influence in other
areas.

C.1.4.1 Test Well 184W101 and Monitor Well 184W502M

An aquifer test was performed at Test Well 184W 101 located in the southeast portion of Spring Valley
approximately 14 mi southeast of Test Well 184W103. Test Well 184W101 was completed to a depth
of approximately 1,760 ft bgs and has a static water level of approximately 470 ft bgs.

Appendix C C-29

SE ROA 50613
JA_16014



Hydrogeologic evaluation of the site indicated the presence of afault structure, which was anticipated
to be intersected by the test well.

Associated Monitor Well 184W502M, located approximately 175 ft from 184W101, was drilled first
and encountered carbonates consisting of the Guilmette Formation and Simonson and Sevy
dolomites. The borehole was initially planned to be terminated at approximately 1,300 ft bgs, but
because the yield from the borehole above 1,300 ft bgs was very poor, the borehole was extended to
1,760 ft bgs. As aresult, the borehole encountered the target fault structure with a higher density of
open fractures, and the yield increased significantly.

A sustainable pumping rate of 2,520 gpm was maintained during the 72-hr constant-rate test. Drilling
results, geophysical logs, and temperature data indicated that fractures associated with open fractures
encountered between 1,300 and 1,700 ft bgs were the major source of well inflow.

Results from a 72-hr constant-rate and subsequent recovery aquifer test were evaluated using Barker
Generalized Radial Flow Model (Barker GRFM) dual-porosity analysis and Cooper-Jacob analysis as
the primary and secondary solutions, respectively. The primary solution indicated a composite
optimal solution for hydraulic conductivity of approximately 7.6 to 8.0 ft/day using a saturated
thickness over the length of the saturated interval of the borehole. However, considering the majority
of inflow occurred from the zone consisting of the lower 20 percent of the well, an equivaent
hydraulic conductivity would be approximately 40 ft/day over that interval of the borehole based on
the Barker GRFM method. The secondary solution provided a wider range of hydraulic
conductivities of 1.9 to 14 ft/day.

C.1.4.2 Test Well 184W103 and Monitor Well 184W504M

A 72-hr constant-rate and subsequent recovery aquifer test was performed at Test Well 184W103,
located approximately 8 mi south of Test Well 184W105. Thistest well and associated monitor well
are completed in the unconfined carbonate aquifer within the Arcturus Formation with drilled
completion depths of 1,046 and 1,040 ft bgs, respectively. Static depth to water in these wells is
approximately 100 ft bgs. Hydrogeol ogic reconnaissance and evaluation of this site indicated that the
wells did not intersect significant fault structures and fractures were commonly clay filled. Results
from the aguifer-test analysis using the Barker GRFM dual-porosity method and the Cooper-Jacob
method as primary and secondary solutions, respectively, indicate a hydraulic conductivity of 5.0 to
12 ft/day.

C.1.4.3 Test Well 184W105 and Monitor Well 184W506M

Test well 184W105 and the associated monitor well 184W506M are completed in unconfined
fractured carbonate, which was determined to be Pennsylvanian-Permian age limestone (Table C-4).
Unsaturated Quaternary surface alluvium overlays the carbonate at this location to a depth of 15 to
35 ft bgs. Both wells were completed to a depth of 1,160 ft bgs, and the static depth to water at the
site is approximately 214 ft bgs. The site location was selected after conducting a geologic
reconnaissance of the area, including field mapping, review of geophysical and well log data, and
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evaluating surface structural features using aerial photography. Regional data and geologic mapping
in the vicinity indicate the presence of faulting and related structures at the site.

The wells are located near severa structures and are likely situated in the fault damage zone. A fault
isvisible with a strike of N42W approximately 500 ft northwest of the site along with an associated
secondary north-south to N1OW trending fault dipping 30 to 62 E. The northwest structures trend
amost directly toward the wells. The test and monitor wells are believed to be located along the
strike and within the damage zone of this exposed fault. This fault zone is estimated to be less than
500 ft wide at the surface and is part of a larger fault complex. An additional east-west fault trends
through the hills west of the well site and isinferred to pass just north of Monitor Well 184W506M .

Significant fracture zones were identified using downhole geophysical methods at depths ranging
from 790 to 850 ft bgs for Test Well 184W 105, with less pronounced fracture zones identified in the
range of 200 to 300 ft and 600 to 700 ft. Fracture zones were defined in Monitor Well 184W506M at
depths of 200 to 300 ft and 480 to 880 ft.

A constant discharge rate of 3,000 gpm was used for the 72-hr test. The constant rate and subsequent
recovery data were evaluated using Barker GRFM dual-porosity analysis as the primary solution and
Cooper-Jacob analysis as the secondary solution. Results indicate an optimal solution for hydraulic
conductivity of approximately 56 to 64 ft/day.

C.1.4.4 Test Well SPR7005X and Monitor Well SPR7005M

A 120-hr constant-rate aquifer test was performed at Test Well SPR7005X |ocated at Cooper Canyon
in Spring Valley. The pumping rate during the constant-rate test was 3,000 gpm. Thiswell was sited
based upon geologic reconnaissance and surface geophysics indicating the presence of faulting in
Middle Cambrian limestone and dolomite. It was completed, along with associated Monitor Well
SPR7005M, within a distinctive fault structure. Specific capacity of the test well was greater than
111 gpm/ft of drawdown at the end of the 120-hr test. Data are currently being analyzed. However,
the hydraulic conductivity is expected to be at the higher range of the other carbonate aquifer tests
performed in Spring Valley.

These results, while local, are consistent with higher hydraulic conductivities associated with fault
structures compared to nonfaulted areas. Preliminary aquifer-property values reflect a composite
value over the length of the communication interval between the aquifer and the well. Property
values would vary within discrete vertical zones depending upon the fracture density and zone
characteristics (Table C-4).

C.1.45 Test Well SPR7007X and Monitor Well SPR7007M

Test well SPR7007X islocated approximately 100 ft north of Monitor Well SPR7007M. These wells
are completed in Quaternary-Tertiary alluvium at depths of 1,040 ft bgs, and their static depth to
water is approximately 156 ft bgs. Preliminary analysis using the Thels Recovery, Neuman
Unconfined Solution, and Moench 1997 modelsindicate the hydraulic conductivity would range from
33 to 38 ft/day.
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C.1.4.6 Test Well SPR7008X and Monitor Well SPR7008M

A 72-hr constant-rate test was performed on Test Well SPR7008X with a target discharge rate of
2,000 gpm. Thiswell and associated Monitor Well SPR7008M were completed in the aluvial aquifer
at a total depth of 970 and 960 ft bgs, respectively. The static depth to water at these wells is
approximately 13 and 14 ft bgs, respectively. Moench confined and unconfined with leaky confining
layers methods were used to evaluate the possible connection between the aquifer test interval,
presumably a confined aguifer, and an upper unconfined aquifer. Preliminary results indicate a
hydraulic conductivity of the test interval of 4.2 to 5.9 ft/day.

C.1.4.7 Irrigation Well SPR7023lI

Irrigation Well SPR70231 is completed in the unconfined aluvial aquifer with a drilled depth of
1,200 ft bgs. The static water level is approximately 302 ft bgs. A 120-hr constant-rate pumping test
was conducted at this well. The time-drawdown data were analyzed using the Cooper-Jacob
straight-line and Theis recovery methods. These analyses indicate a hydraulic-conductivity range of
8.210 9.9 ft/day.

C.1.4.8 Summary

Estimates of aquifer properties are an essential component of the development of a conceptual
groundwater flow model. These estimates served as the initial estimates used to constrain the
hydraulic properties in the numerical groundwater flow model.

Data used in this report were obtained from many site-specific and regional reports and synthesized
into a single aquifer-property database. The data were then queried from the database according to
one of the eight RMUs that were developed as part of the hydrogeologic conceptual model for the
study area. The data were then statigtically analyzed by RMU to obtain estimates of aquifer
properties, including hydraulic conductivity, storativity, and specific yield. The range in values
provides a measure of the uncertainty in the property.

The relationship of hydraulic conductivity with depth was also analyzed as part of this study. Many
previous investigators have shown a relationship between hydraulic conductivity and depth. In
general, hydraulic conductivity decreases with depth as a result of confining pressures, sealing
fractures and faults, and compressing sedimentary units. This study showed there was a trend of
decreasing hydraulic conductivity with increasing depth in the UVF, LVF, and LC RMUs.
Uncertainty in the use of this application stems from the large data scatter as well as the decrease in
available data with increasing depth.
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D.1.0 PRECIPITATION STATION DATA

Precipitation station data were compiled and the period of record mean annual value was derived for
each station. Data were compiled from the following sources:

NDWR

USGS

Western Regional Climate Center (WRCC)
National Climatic Data Center (NCDC)
NRCS - SNOwpack TELemetry (SNOTEL).

Precipitation stations selected from these sources included stations qualified as climate normals by
the NCDC. The average annual precipitation as reported by WRCC was used for these stations.
Other stations, except for the Sheep Peak and Hayford Peak stations, have more than 20 “non-zero”
years of reported annual precipitation (i.e., years in which the reported annual precipitation was
greater than zero). Summary data for the stations located within and near the WRFS are listed in
Table D-1.
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E.1.0 ET RATES AND RELATED INFORMATION

This appendix contains detailed information in support of the estimates of groundwater ET volume
calculations. The information consists of the following:

* Observed ET rates
* Rooting depths of phreatophytic plants
e PET dataand spatial distribution

E.1.1 Observed ET Rates

A literature survey for annual ET rates measured in the study area and vicinity was conducted, and the
rates were compiled into the data set presented in Table E-1.

E.1.2 Rooting Depths of Phreatophytic Plants

The roots of phreatophytes in arid climates are extensive, covering a greater diameter and depth
compared to those of plants in wetter climates. Because arid plants depend on their ability to tap
groundwater for survival, the roots can exploit the soil/medium at greater depths to reach the water
table (Lewis and Burghy, 1964). Therefore, understanding rooting depths of phreatophytes in arid
climates would increase understanding of the extinction depth of groundwater ET.

Table E-2 lists rooting depths for different plants found in arid environments similar to that of the
study area. The rooting depth information was obtained from different studies conducted in the
southwestern United States or in similar environments. The rooting depths of phreatophytic plants
extend from just below the ground surface to depths greater than 100 ft. SNWA field personnel have
found plant roots hanging on a water-level logger during a routine monitor well run. The average
depth to water at that particular well is about 18.6 ft. The well is surrounded by greasewood and
rabbitbrush; therefore, it could be assumed that the roots could be from one of these phreatophytes.
During a study performed in the southwestern United States, it was found that mesquite roots
protruded to extreme depths, as deep as 175 ft (Phillips, 1963). This represents the maximum rooting
depth found in the literature review.

Within a given phreatophytic area of reasonably homogeneous conditions, the maximum rooting
depths correspond to the extinction depths of groundwater ET in that area. Groundwater ET is
believed to decrease with increasing depth to water and reaches zero at the extinction depth (Shah
et a., 2007). However, extinction depths are also influenced by other physical characteristics. Soil
characteristics can have an impact on the maximum rooting depth. For instance, a phreatophyte in a
sandy clay soil can have a greater extinction depth than in sandy loam (Shah et al., 2007).
Conventionally, it was believed that the relationship between the extinction depth and groundwater
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table E-2
Rooting Depths of Plants of the Southwestern United States

Rooting Depth

Plant (ft bgs) Source
Alfalfa 12 Weaver (1926)
Alkali sacaton 25 Meinzer (1927)
Arrowweed 25 Meinzer (1927)
Big sage 5.9 Canadell et al. (1996)
Cottonwood 30 Robinson (1958)
Giant wildrye 212 Meinzer (1927)
Greasewood 60 Robinson (1958)
Mesquite 50 Meinzer (1927)
Mesquite 175 Phillips (1963); Canadell et al. (1996)
Pickleweed 220 Meinzer (1927)
Rabbitbrush 35 Mower and Nace (1957)
Rushes and sedges A few feet Meinzer (1927)
Saltbrush 62 Robinson (1958)
Saltcedar 11.8 Canadell et al. (1996)
Saltgrass 12 Meinzer (1927)
Wolfberry 30 USFS (2008)

ET islinear, but as mentioned above, different soil characteristics with different phreatophytes could
generate different relationships. For example, Shah et a. (2007) found an exponential decline of
groundwater ET with increasing depth to water.

E.1.3 PET Data and Spatial Distribution

A PET regression model was derived using estimates of PET reported in McCurdy and Albright
(2004). McCurdy and Albright (2004) calculated PET for existing meteorological stations within the
study area and vicinity using the Kimberly-Penman method (Wright, 1982) and the
Hargreaves-Samani (Hargreaves and Samani, 1985) equation. The PET spatial distribution was
derived from a multiple linear regression model of PET rates versus the latitude and altitude of the
location where PET was measured. The regression model is expressed by the following equation:

PET = 104.3531 —0.82922734Y — 0.004186006Z (Eq. E-1)
where,
PET = Potential ET rate (in./yr)
Y = Latitude (NAD, 1983)
Z = Altitude (ft amgl) (North American Vertical Datum of 1988)

Using Gl S-gridding operations, the spatial distribution of PET was derived by applying Equation E-1
to a 100-m resolution DEM based on the USGS 30-m DEM (USGS, 2006). The meteorological
station locations and their estimated PET values are depicted in Figure E-1 with the resultant PET
distribution derived for the study area.
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F.1.0 DeTAILS OF GROUNDWATER ET ESTIMATES

This appendix contains additional information in support of the groundwater ET estimates. This
information consists of the details associated with the deterministic and stochastic groundwater ET
estimates.

F.1.1 Deterministic Groundwater ET Estimates

Deterministic groundwater ET estimates were made for the entire study area using Method 1.
Deterministic estimates were also made by Welch et al. (2008) for BARCASS using Method 2. The
final estimates used in this study are a combination of Method 1 for the southern basins of the study
area and Method 2 for the northern basins.

F1.1.1 Method 1 Estimates

This section details the groundwater ET estimates derived by Method 1 and explains how the ET rates
were selected, adjusted, and used in the calculations.

Theliterature ET rates presented in Appendix E were reviewed to select the most appropriate rates for
each of the five ET-unit classes defined for thisanalysis. The rates selected for each class (Table F-1)
were based on the similarities between the vegetation types and climate and the availability of
supporting data, such as site coordinates, precipitation, and depth to water.

The selected literature ET rates were adjusted for use in the study area. The adjustment consisted of
scaling the observed ET rates by the PET ratio (PET of ET area/PET at ET observation station).
These adjusted rates were consistently applied to the study area with the following exceptions:

» ET ratesfor the medium-vegetation classin White River and Cave valleys were not scaled by
the PET ratio. The average of the two basin-specific measured rates was used instead.

* Because the ET rate observed for the medium vegetation in Spring Valley was too low as
compared to most of the medium vegetation that actually occursin Spring Valley, thisrate was
not used. Instead, the mean value for dense desert shrubland derived for BARCASS,
1.24 ft/yr, was used.

» The basin-specific ET rate measured for bare soil in Snake Valley was used for that category
without any scaling by PET.

Using the ET rates described above, the ET areas, and the 800-m PRISM precipitation grid presented
in Section 5.0, the groundwater ET volumes were calculated using GIS tools. The calculations were
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made following the 800-m PRISM grid and consisted of first subtracting the precipitation rate from
the assigned ET rate, and second, multiplying the resulting groundwater ET rate by the area. For grid
cellswhere the precipitation rates were larger than the ET rate, the difference was assumed to be zero.
Thus, the corresponding groundwater ET volume was calculated as zero. The groundwater ET
volumes calculated for the grid cells were then grouped by ET class for each basin where
groundwater ET occurs. Table F-2 provides the results of these calculations. The table contains the
scaled ET rates, the precipitation rates, and the groundwater ET areas.

The following are column-by-column descriptions of the information contained in Table F-2.

HA Number: Hydrographic area number
HA Name: Hydrographic areaname
ET Class Number: Class of groundwater ET within potential groundwater ET area

Category 1 ET Area (acres): Area of groundwater ET categorized as likely using main
groundwater system

Category 2 ET Area (acres): Area of groundwater ET categorized as using uncertain
groundwater system (may have partial or complete connection with main groundwater system

Category 3 ET Area (acres): Area of groundwater ET categorized as likely using local
groundwater system

Total ET Area(acres). Total areaof groundwater ET for categories 1, 2, and 3
Scaled ET Rate (ft/yr): Tota ET rates scaled by PET ratio

Avg. Annual Precipitation PRISMV 2 (ft/yr): Average precipitation rate for ET class within
given basin derived from 800-m PRISM grid

Category 1 Groundwater ET Volume (afy): Volume of groundwater ET calculated as
(ET Rate— PRISMV?2) x Category 1 ET area

Category 2 Groundwater ET Volume (afy): Volume of groundwater ET calculated as
(ET Rate — PRISMV?2) x Category 2 ET area

Category 3 Groundwater ET Volume (afy): Volume of groundwater ET calculated as
(ET Rate — PRISMV?2) x Category 3 ET area

Total Groundwater ET Volume (afy): Total volume of groundwater ET (sum of Categories 1,
2, and 3)
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F.1.1.2 Method 2 - BARCASS Estimates

The detailed estimates of groundwater ET derived for basins located in the BARCASS area are
documented in four USGS reports:

* The final groundwater ET estimates are documented in the summary report titled Water
Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County,
Nevada, and Adjacent Areas in Nevada and Utah prepared by Welch et al. (2008).

» The potential groundwater ET areas and their classification are documented in a report titled
Mapping Evapotranspiration Units in the Basin and Range Carbonate-Rock Aquifer System,
White Pine County, Nevada, and Adjacent Areasin Nevada and Utah by Smith et al. (2007).

» Field measurements of ET rates and ancillary information are documented in a report titled
Evapotranspiration Rate Measurements of Vegetation Typical of Ground-Water Discharge
areas in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada,
and Adjacent Areasin Nevada and Utah by Moreo et a. (2007).

* The agricultural areas are documented in a report titled Irrigated Acreage within the Basin
and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas
in Nevada and Utah by Welborn and Moreo (2007).

F.1.1.3 Combined Method 1 and Method 2 (BARCASS)

The estimates of groundwater ET are derived by Method 1 for the southern basins and Method 2
(BARCASS) for the northern basins to accomplish the following:

» Directly compare the ET rates and volumes derived using Methods 1 and 2 (BARCASS).
» Calculate and compare groundwater ET volumes for each category of ET areain each basin.
» Derive stochastic estimates of groundwater ET volumes using asingle ET data set.

The resulting ET areas and annual volumes of groundwater ET for the 5 ET classes for the basins of
the study areaare listed in Table F-3 by category. This part of the data analysis was performed before
the publication of DeMeo et al. (2008) and therefore does not include their estimates.

The combined ET data set was used, and the ET rates for equivalent classes in basins that are
common to Methods 1 and 2 (BARCASS) were compared directly. Asshown on Figure F-1, therates
derived using the two methods are comparable. The basin groundwater ET volumes derived by
BARCASS are also comparable to those derived by Method 1. See Figure F-2 and Table F-3 for the
volumes derived by the combined data set.

The consistent data set was used as the source of input parameters in the Monte Carlo analysis. The
estimates of annual volumes of groundwater ET, derived from this Monte Carlo analysis, are
described in the following section.
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Figure F-1
Comparison between ET Rates Derived by Methods 1 and 2 (BARCASS)
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Figure F-2
Comparison between SNWA and BARCASS ET Volumes
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F.1.2 Stochastic Estimates of Groundwater ET

Stochastic estimates of groundwater ET were derived for the study area using the consistent
groundwater ET data set described in the previous section. The magnitude of the uncertainty in the
calculated annual volumes of groundwater ET was estimated using Monte Carlo simulations
implemented in the Crystal Ball software. Considering that the groundwater ET volume of each ET
classwas calculated asits areatimes the appropriate ET rate less the precipitation volume on the area,
the uncertainty on the volumes of groundwater ET is due to the uncertainty in these three input
parameters. The uncertainty in the input parameters used in the analysis and the detailed results are
described here.

F.1.2.1 Uncertainty of Input Parameters

The Monte Carlo analysis requires estimates of the uncertainty on each of the three variables:
potential ET area, ET rate, and precipitation rate. All three variables are assumed to be normally
distributed. The ET rate is, however, dependent on the precipitation rate, as total ET is the sum of
groundwater ET and precipitation. Therefore, these two variables are correlated. The information
supporting the uncertainty estimated for each input variable (ET class area, precipitation rate, and ET
rate) is described in the following text.

F.1.2.1.1 ET Class Areas

The potential groundwater ET areas needed are those reflecting predevelopment conditions.
However, no records of these areas exist prior to the Reconnaissance Series. Thus, it was assumed
that mean groundwater areas derived from previous studies and satellite imagery and modified to
remove the agricultural areas would provide an approximate ET map representative of
predevelopment conditions. Although this was determined to be the best approach, it has many
limitations. Limitations relating to the creation of the current-condition and predevelopment
groundwater ET maps are as follows:

* Ground truthing of areas of ET within the study area was conducted during the summer of
2004; however, the classification of the ET areas was determined from 2002 Landsat imagery.
It is possible that vegetation communities and boundaries could change, especially because of
drought, in a 2-year span; however, such changes are assumed to be minimal.

* Landsat scenes, with minimal cloud cover, within the months of June and July were chosenin
order to represent maximum plant growth during the height of the growing season. Therefore,
only one day in the life of the plants was used to support the development of the
current-condition map. Thus, the NDVI analysis used in determining the land-classification
scheme also represents a single day.

* A magor limitation in creating the predevelopment map is the lack of historical imagery.
Because historical imagery is nonexistent, creation of a predevelopment groundwater ET map
representing steady-state conditions includes some subjective interpretations.
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

The uncertainty on the ET class areas was estimated using previous estimates of the coefficient of
variability (COV) by others (Zhu et a., 2007), differences in the estimates derived by this study and
by other investigators, and the classification accuracy conducted by SNWA as aguide. Inthe Monte
Carlo analysis conducted by DRI for BARCASS (Zhu et al., 2007), aCOV of 10 percent was used for
al ET unitsidentified. Comparisons of previously reported extents of groundwater ET classes show
that those of Open Water, Playa, Wetland/Meadow, and Medium Vegetation areas are more
comparable than those of Bare Soil/Low Vegetation. Thisiswell illustrated by the example of White
River Valley. Estimates of the groundwater ET area made by previous investigators for White River
Valley (Maxey and Eakin, 1949; Welch et a., 2008, and this study) vary by more than 100 percent.
The results of the classification accuracy conducted by SNWA are provided in TableF-4. The
reported accuracy provides afirst estimate of the relative error (1-reported accuracy). An estimate of
the COV may be obtained by dividing the relative error by 2. These crude estimates of the COV
serve as a guide to deriving the fina estimates of the COV's using the other available information.
The COVsin Table F-4 indicate that the estimated COV for Open Water (ET Class 1) should be the
lowest, the COV'sfor ET Classes 3, 4, and 5 should be about the same and dlightly larger than for ET
Class 1. The COV for ET Class 2 (Bare Soil/Low Vegetation) is the largest and should be at least
twice as large as for the more densely vegetated areas.

Table F-4

Reported Accuracy and Relative Errors on ET Classification
ET Class Reported Relative Estimated
Number ET Class Accuracy Error cov

1 Open Water 0.92 0.08 0.04

2 Bare Soil/Low Vegetation 0.78 0.22 0.11

3 Phreatophyte/Medium Vegetation 0.89 0.11 0.06

4 Wetland/Meadow 0.90 0.10 0.05

5 Agriculture 0.88 0.12 0.06

Note: COV is coefficient of variability
Coefficients of variability used for the ET classes are asfollows:

*  Wetland/Meadow and Medium Vegetation ET classes. The COV is 0.1 based on averages
used by previous investigators and the accuracy assessment conducted by SNWA (Table F-3
and Table F-4).

» Open Water and PlayaET classes: These two classes are the most accurate and were assigned
a COV of 0.05 based on the results of the classification accuracy results (Table F-4) and the
fact that these two classes are easier to delineate.

» Bare Soil/Low Vegetation: This ET class has the largest uncertainty, as indicated by the
classification accuracy results (Table F-4). However, the accuracy results do not provide an
estimate of the full range of uncertainty. Furthermore, for this ET class, the uncertainty of the
area increases with the size of the area. A COV of 0.5 was assumed for the largest areas
(White River, Snake, Steptoe, and Spring valleys). A smaller COV of 0.25 was assigned to
the areas of this type located in other basins.

Appendix F F-17

SE ROA 50666

JA_16067



F.1.2.1.2 Precipitation Rates

The uncertainty on the precipitation rates used in the calculations of the groundwater ET was treated
differently for the northern basins (Method 2-BARCASS) than for the southern basins (Method 1).

For the northern basins, the COV's derived for BARCASS (Welch et al., 2008) were used to represent
the uncertainties associated with the mean values. This was appropriate because the mean
precipitation rates used in the groundwater ET calculations are based on a different version of the
PRISM grid (modified 4-km grid).

For the southern basins, the COV's were estimated using two main types of uncertainty that affect the
precipitation rates: temporal and spatial. The temporal uncertainty stems from the use of 30 years of
data (PRISM normal) to represent long-term mean precipitation rates. The temporal uncertainty was
estimated from statistics, conducted on yearly station data over the period of record, for a station
located within or near the relevant basin. If two or more stations were used for a given basin, asingle
COV was derived from the data by averaging the yearly data by year for all stations and then deriving
the statistics. If no stations were present within the basin, the COV calculated using all the station
data was assigned to the ET units within that basin. The spatial uncertainty stems from averaging the
precipitation values spatially over a given ET area to obtain a mean value. The spatial uncertainty
was derived from statistics conducted on the grid values falling within each ET class. The temporal
and spatial uncertainties were combined to produce an estimate of the total uncertainty represented by
an overall COV.

F.1.2.1.3 ET Rates

The detailed estimates of ET rates for the five combined ET classes and their correlation to
precipitation are presented in this section. The observed ET rates and associated data compiled from
the literature were classified by ET class and are listed in Table F-5. ET data for each ET class were
then adjusted by the PET ratio to represent each of the ET classes within each sub-area of each basin.

A dtatistical analysis was conducted on the ET rate data to derive descriptive statistics for each ET
class within each sub-area of each basin. Because of the limited number of data points in each class,
the type of probability distributions cannot be clearly identified. Asasimplification, the probability
distributions were assumed to be normal. A COV was then derived from the mean and standard
deviations of each classin each sub-area of each basin.

The correlation coefficient between the total ET and precipitation varies between 0 and 1. For areas
where adl ET isfrom the saturated zone, the correlation coefficient should be O (ET Class1). Suchis
the case for open-water evaporation, assuming that the source of the open water is groundwater. For
ET areaswhere all ET isfrom precipitation, the correlation coefficient isequal to 1. Such isthe case
for areas where the depth to water is greater than the maximum extinction depths of phreatophytes.
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table F-5

Reported ET Rates by ET Class

(Page 1 of 4)

UT™M UT™M Depth to
Northing | Easting Water Total ET | Precipitation
ET Unit Description (m) (m) (ft bgs) (ftlyr) (ftlyr) Source
Bare Soil/Low Vegetation
Greasewood 4,381,357 | 338,222 2510 30 0.59 0.491t00.66 | Carman (1993)
Saltgrass (sparse to very sparse) 4,031,528 | 557,768 - 0.62 0.21t00.35 | Laczniak et al. (1999)?
Sagebrush and rabbitbrush (moderate) 4,436,956 | 624,967 >80 0.99 0.65 Berger et al. (2001)"
Rabbitbrush and wolfberry (sparse) 4,101,973 | 527,189 51020 0.62 0.50 Reiner et al. (2002)°
Saltgrass, pickleweed, and shrub 4,015,751 | 510,177 | 5t020 0.60 0.06 DeMeo et al. (2003)
mesquite (low density)
Rabbitbrush scrub 4,136,441 | 380,459 >16 0.31 0.11
Desert sink scrub 4,125,767 | 381,903 >13 | 0.49t00.80 0.10 Harrington &
Steinwand (2003,
Nevada saltbush scrub 4,132,231 | 379,956 | 13to14 0.59 0.35 2004)
Nevada saltbush meadow 4,131,124 | 379,763 | 6.9t07.9 | 0.71t0 1.06 | 0.10to0 0.30
Barren (<10% vegetation) 3,894,274 | 721,586 1.66 0.164 BOR (1997-2007)¢
Barren 3,853,458 | 723,745 0.96 0.03
Westenburg et al.
Barren 3,853,458 | 723,745 0.87 0.43 (2006b)
Barren 3,853,458 | 723,745 0.88 0.57
Desert shrubland; greasewood 4.336,424 | 753.927 1716 0.836 052
(moderate)
Desert shrubland; greasewood and 4,295,186 | 719,949 9.78 0.835 0.72 Moreo et al. (2007)
rabbitbrush (sparse)
Desert shrubland; greasewood and 4,296,079 | 720,099 7.24 1.01 0.76
rabbitbrush (moderate)
Mixed shrubland (low density) 4,294,919 | 719,920 15.20 0.79 0.51
Mixed shrubland (low density) 4,294,919 | 719,920 15.32 0.62 0.42
Greasewood, rabbitbrush, and ]
shadscale 4,375,912 | 715,857 17.38 0.80 0.27 SNWA Project data
(moderate)
Monotypic stand of greasewood 4,325,090 | 754,601 | 30.47 0.64 0.16
(moderate)
Phreatophyte/Medium Vegetation
Saltgrass and greasewood 4,107,584 | 388,935 8t09 1.26 0.52
Alkali meadow; sacaton and thistle 4,140,145 | 377,591 10to 15 2.71 0.49¢
Saltgrass, sacaton, and rabbitbrush 4,093,688 | 390,978 7t09 2.05 0.39¢
Nevada saltbush, sacaton, and 4,077,998 | 394522 | S5to7 2.69 0.33° Duell (1990)
rabbitbrush
Rabbitbrush, sacaton, and ephedra 4,123,439 | 381,782 10to 11 1.99 0.51°¢
Saltgrass, rabbitbrush, sacaton, and 4130915 | 378,873 1010 11 155 0.49
greasewood
Rabbitbrush 4,355,737 | 456,918 10to 15 1.05 0.66t0 0.98 | Carman (1993)
Saltgrass (sparse) 4,025,243 | 562,370 1.88 0.21t00.35
Laczniak et al. (1999)?
Saltgrass (sparse to moderate) 4,037,549 | 559,594 1.92 0.21t00.35
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Table F-5
Reported ET Rates by ET Class
(Page 2 of 4)

(high density)

UTM UT™M Depth to
Northing | Easting Water Total ET | Precipitation
ET Unit Description (m) (m) (ft bgs) (ftlyr) (ft/yr) Source
Saltgrass, rabbitbrush, wildrye, and 4.447,894 | 631577 <5 133 0.65
greasewood (moderate)
Saltgrass, rabbitbrush, wildrye, and 4447801 | 631532 <5 132 0.65
greasewood (moderate)
Rabbitbrush, wildrye, greasewood, and |/ /6, 35, | 34578 5 1.33 0.65 Berger et al. (2001)°
sagebrush (moderate)
Rabbitbrush, wildrye, greasewood, and 4444761 | 632318 10 133 0.65
sagebrush (moderate)
Greasewood, rabbitbrush, wildrye, 4447817 | 632,478 17 133 0.65
sagebrush (sparse to moderate)
Primarily greasewood (moderate to 4,099,904 | 525961 510 20 138 0.50
dense)
H C
Saltgrass (sparse to moderate) 4,100,119 | 525,664 | fewto 10 1.63 0.50 Reiner etal. (2002)
Wire and saltgrass (sparse to moderate) | 4,096,110 | 524,613 | few to 10 2.49 0.50
Grasses, arrowweed, mesquite, and 4,005,708 | 511,887 | 21020 2.0 0.23 DeMeo et al. (2003)
pickleweed (moderate)
Harrington &
Rabbitbrush meadow 4,093,461 | 391,331 | 85to 11 1.68 0.23 Steinwand (2003,
2004)
Desert vegetation 3,894,274 | 721,586 1.34 0.16¢ BOR (1997-2007)¢
Rush and saltgrass 4,211,928 | 1,500,833 3.0 1.34 0.60
Cooper et al. (2006)
Greasewood and rabbitbrush 4,211,928 | 1,500,833 8.2 0.91 0.63
Saltgrass, grass, yerba mansa,
arrowweed, desert baccharis, and 4,096,966 | 465,743 Oto15 |[2.28t02.68| 0.05t00.49 | Laczniak et al. (2006)
mesquite
Rabbitbrush and greasewood 4,323,822 | 257,119 3to5 1.9 0.66f
Maurer et al. (2006)
Bitterbrush and sage 4,310,759 | 254,378 60 15 0.66f
Arrowweed (low to medium density) 3,853,458 | 723,745 8 2.87 0.03
Arrowweed (low to medium density) 3,853,458 | 723,745 8 2.65 0.43
Arrowweed (low to medium density) 3,853,458 | 723,745 8 271 0.57 Westenburg et al.
Mixed vegetation (medium density) 3,850,483 | 726,385 4108 2.85 0.03 (2006b)
Mixed vegetation (medium density) 3,850,483 | 726,385 4108 2.61 0.43
Mixed vegetation (medium density) 3,850,483 | 726,385 4108 2.63 0.57
Desert shrubland; greasewood (dense) | 4,253,549 | 670,158 32.39 1.06 0.74
. Moreo et al. (2007)
Desert shrubland; greasewood 4.278,646 | 665008 2358 1.02 0.95
(moderate)
Mixed shrubland (moderate) 4,277,445 | 665,017 18.95 1.38 0.87
Mixed shrubland (moderate) 4,277,445 | 665,017 18.85 0.68 0.45 SNWA Project data
Monotypic stand of greasewood 4,287,266 | 753,182 | 19.31 1.65 0.37
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table F-5

Reported ET Rates by ET Class

(Page 3 of 4)

UT™M UT™M Depth to
Northing | Easting Water Total ET | Precipitation
ET Unit Description (m) (m) (ft bgs) (ftlyr) (ftlyr) Source
Playa
Playa, often salt covered 4,434,212 | 764,573 Oto1l 0.75 0.42 Malek et al. (1990)
Playa; sparse seepweed, greasewood, . . <10 121013 <0.16 Czarnecki (1997)
and saltgrass
Bunch grass (very sparse) 4,029,199 | 559,627 2.58 0.21t0 0.35 ]
Laczniak et al. (1999)?
Bunch grass (sparse to very sparse) 4,025,676 | 562,516 2.60 0.21t0 0.35
Bare soil playa 4,437,735 | 627,276 0.80 0.65 Berger et al. (2001)°
Salt-encrusted playa 4,009,234 | 519,297 <5 0.17t00.39 | 0.04t00.28
- DeMeo et al. (2003)
Bare soil playa 4,007,757 | 520,249 <10 0.21t00.37 | 0.06t00.35
Wetland/Meadow
Saltgrass, sacaton, and rush 4,071,453 | 394,441 <4 3.24 0.26 Duell (1990)
Mixed grasses, clover, and scattered | 431 a99 | 559,192 3.44 021100.35 |Laczniak et al. (1999)?
shrubs (dense)
Meadow; mixed sedges, rushes, and 4437444 | 626,476 < 319 0.65
grasses (dense) Berger et al. (2001)°
Grasslands 4,437,444 | 626,476 2.36 0.65
fSlaltgrass (dense), surface periodically 4.037.732 | 559269 3.07 021100.35
ooas Reiner et al. (2002)°
Meadow and marsh grass (dense) 4,097,156 | 523,993 0to 20 3.14 0.50
Harrington &
Sacaton, saltgrass, and wildrye 4,084,272 | 389,787 6.6t011 | 1.37t02.25| 0.11t00.99 | Steinwand (2003,
2004)
Grasses and mesquites (high density) 4,066,686 | 487,824 <20 2.9 0.16 DeMeo et al. (2003)
Mixed grasses/meadow 4,312,948 | 723,534 3.89 2.25 0.66 Moreo et al. (2007)
Irrigated pasture; perennial grasses 4,360,829 | 716,743 3.56 0.35 SNWA Project data
(dense)
Open water
Open water body; submerged aquatic | 535 564 | 558,128 8.6 0.21100.35 | Laczniak et al. (1999)
vegetation
Open water body; submerged aquatic | 457 245 | g7 276 5.31 0.65 Berger et al. (2001)°
vegetation
Lake Mead; Water Barge Cove 4,000,515 | 704,576 7.0 0.28 t0 0.34"
Lake Mead; Sentinel Island 3,992,296 | 702,539 7.5 0.28 t0 0.34" Westenburg et al.
Lake Mead; Virgin Basin 3,997,837 | 728,438 76 0.28 to 0.34" | (2006a)
Lake Mead; Overton Arm 4,021,370 | 735,435 6.8 0.28 t0 0.34"
Riparian
Riparian; mostly tamarix 4,051,962 | 738,583 --- 25t04.8 0.359 Devitt et al. (1998)
Cattails and reeds (dense) 4,037,793 | 559,173 3.91 0.21t00.35
; Laczniak et al. (1999)?
Wiregrass and salt grass 4,037,613 | 559,842 3.23 0.21100.35
(sparse to moderate)
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Table F-5
Reported ET Rates by ET Class
(Page 4 of 4)
UTM UTM Depth to
Northing | Easting Water Total ET | Precipitation
ET Unit Description (m) (m) (ft bgs) (ftlyr) (ft/yr) Source
Moderate to dense bulrush and cattails 4,453,980 | 630,360 1to3 4.19 0.65 Berger et al. (2001)°
Grasses and mesquites (high density) 4,065,886 | 487,005 <20 3.9 0.25 DeMeo et al. (2003)
Saltcedar (high density) 3,854,463 | 725,587 8 3.80 0.03
Saltcedar (high density) 3,854,463 | 725587 8 3.56 0.43 ‘(’;’gggeb”)burg etal.
Saltcedar (high density) 3,854,463 | 725,587 8 3.59 0.57
Seasonal wetland (flooded in winter and
not 3,894,274 | 721,586 3.65 0.16¢
irrigated in summer)
Screwbean and honey mesquite (11% to d
60%) and arrowweed (<25%) 3,894,274 | 721,586 3.99 0.16
Low Vegetation - phreatophyte
vegetation 3,894,274 | 721,586 4.29 0.164
(>10% to <30%)
0, 0,
Saltcedar (11% to 60%) and arrowweed 3,804,274 | 721586 4.36 0.16¢
(<25%)
0, 0,
Arrowweed (51% to 100%) and trees 3,804,274 | 721586 4,69 0.16¢
(£10%)
Mesquite (21% to 60%), arrowweed d
(31% to 60%), and saltcedar (<20%) 3894,274 | 721,586 4.76 0.16
i 0,
Cottonwood and willow trees (61% to 3.804.274 | 721586 496 0.16¢ BOR (1997-2007)"
100%)
Screwbean and honey mesquite (61% to d
100%), arrowweed (<25%) 3,894,274 | 721,586 4.99 0.16
!\/Iglst 50|.I unit (flooded in winter and 3,804,274 | 721586 503 0.16¢
irrigated in summer)
Saltcedar (61 to 100%), arrowweed d
(<25%) 3,894,274 | 721,586 5.12 0.16
Saltcedar (£75%), arrowweed (>25%) 3,894,274 | 721,586 5.29 0.16¢
Saltcedar (15 to 45%), mesquite (15 to d
45%), arrowweed (20 to 40%) 3,894,274 | 721,586 5.43 0.16
Saltcedar (11 to 60%), mesquite (11 to d
60%), arrowweed (<25%) 3,894,274 | 721,586 5.45 0.16
Marsh, cattail, bullrush, phragmites 3,804,274 | 721586 593 0.16¢
(bamboo)

a8Evapotranspiration measured at an individual site (Laczniak et al., 1999).

PRates for growing season only (or less).

CEvapotranspiration measured at an individual site (Reiner et al., 2002).

dPrecipitation data are for the Mohave station (BOR, 2007) and ET data are averaged for 1995 to 2005 (BOR, 1997; 1998; 1999; 2000a
and b; 2001; 2002; 2004a and b; 2005; and 2007).

€Estimated as the average of the precipitation reported for the two nearest sites (Duell, 1990).

'Precipitation reported for the test hole that is nearest to the evapotranspiration stations, CL-1 (Maurer, et al., 2006).

9Estimated as the average precipitation reported for 1994 to 1996 for the Overton, Nevada, station (WRCC, 2008).

hAverage annual precipitation (1961 to 1990) measured at McCarran Airport, Las Vegas, Nevada (0.34 ft), and Overton, Nevada (0.28),
from DRI (Westenburg et al., 2006a).

iData reported from Reiner et al. (2002); data set for this site was more complete than that reported by Laczniak et al. (1999).
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

For the three phreatophyte ET classes, the correlation of ET rates with precipitation rates was
interpreted using the ET site data collected by SNWA. Monthly ET site data, including the ET and
precipitation rates, were compiled (Table F-6). The site data were then grouped by ET class, and
correlation coefficients were derived for the three ET classes represented by the data, i.e., Wetland/
Meadow, Phreatophyte/Medium Vegetation and Bare Soil/Low Vegetation. The correlation
coefficient derived for the Wetland/Meadow ET classis 0.2. The correlation coefficients calculated
for the Phreatophyte/Medium Vegetation and Bare Soil/Low Vegetation, 0.57 and 0.54 respectively,
were very similar and reversed, i.e., the Phreatophyte/Medium Vegetation ET rates should have a
lower correlation to precipitation than the Bare Soil/Low Vegetation ET rates. Based on this
observation, the four stations used to derive the two correlations (SV3, WRV2, SNV2, SV1) were
combined to derive a single correlation. The resulting correlation coefficient is about 0.6 and was
assumed to represent the Bare Soil/Low Vegetation ET class. The correlation coefficient for the
Phreatophyte/Medium Vegetation ET class must be greater than 0.2 and less than 0.6. The middle of
thisinterval, 0.4, was selected.

ET from wet playas generally consists of evaporation only and, given the same climatological
conditions, it is highly variable depending on the depth to water. Therefore, the correlation
coefficient is also variable depending on the depth to water. An average correlation coefficient of 0.5
was selected to accommodate all wet playas in the study area. The resulting correlation coefficients
are presented in Table F-7.

F.1.2.2 Detailed Input Data

The uncertainty information for each input variable was estimated and is presented in Table F-8. Ten
thousand (10,000) realizations were made using the random number method (seed = 999) and the
input parameters listed in Table F-8.
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Monthly ET Site Data Used to Estimate Correlation Coefficients

Table F-6

between ET and Precipitation Rates

SV2B | SNV1 Sv3 | WRV2 SNV2 ‘ Sv1
Phreatophyte/
Wetland/Meadow Medium Vegetation Bare Soil/Low Vegetation
Year Month ETA P ETA P ETA P ETA P ETA P ETA P
2005 | January NA NA NA NA NA NA 0.075 | 0.185 NA NA NA NA
2005 | February NA NA NA NA NA NA 0.130 | 0.129 NA NA NA NA
2005 | March NA NA NA NA NA NA 0.178 | 0.130 NA NA NA NA
2005 | April NA NA NA NA NA NA NA NA NA NA NA NA
2005 | May NA NA NA NA NA NA NA NA NA NA NA NA
2005 | June NA NA NA NA NA NA NA NA NA NA NA NA
2005 | July NA NA NA NA NA NA NA NA NA NA NA NA
2005 | August NA NA NA NA NA NA 0.148 | 0.042 NA NA NA NA
2005 | September NA NA NA NA NA NA 0.184 | 0.057 NA NA NA NA
2005 | October NA NA NA NA NA NA 0.081 | 0.065 NA NA NA NA
2005 | November NA NA NA NA NA NA 0.042 | 0.025 NA NA NA NA
2005 | December NA NA NA NA NA NA 0.031 | 0.018 NA NA NA NA
2006 | January NA NA NA NA NA NA 0.036 | 0.068 NA NA 0.031 | 0.034
2006 | February NA NA NA NA NA NA 0.040 | 0.081 NA NA 0.044 | 0.046
2006 | March NA NA NA NA NA NA 0.195 | 0.145 NA NA 0.115 | 0.093
2006 | April NA NA NA NA NA NA 0.227 0.111 NA NA 0.094 | 0.070
2006 | May NA NA NA NA NA NA 0.181 | 0.004 NA NA 0.070 | 0.005
2006 | June NA NA NA NA NA NA 0.115 | 0.043 NA NA 0.079 | 0.015
2006 | July NA NA NA NA NA NA 0.250 | 0.190 NA NA 0.142 | 0.141
2006 | August NA NA NA NA NA NA 0.111 0.002 NA NA 0.087 | 0.001
2006 | September NA NA NA NA NA NA 0.127 | 0.128 NA NA 0.055 | 0.024
2006 | October NA NA NA NA NA NA 0.036 | 0.081 NA NA 0.039 | 0.073
2006 | November NA NA NA NA NA NA 0.034 | 0.003 NA NA 0.013 | 0.002
2006 | December NA NA NA NA NA NA 0.036 | 0.015 NA NA 0.020 | 0.008
2007 | January NA NA NA NA NA NA 0.036 | 0.008 NA NA 0.036 | 0.000
2007 | February NA NA NA NA NA NA 0.041 | 0.038 NA NA 0.038 | 0.074
2007 | March NA NA NA NA NA NA 0.042 | 0.035 NA NA 0.058 | 0.056
2007 | April 0.216 | 0.019 NA NA 0.048 0.012 0.079 | 0.063 NA NA 0.070 | 0.041
2007 | May 0.524 | 0.021 | 0.229 | 0.008 0.086 0.021 0.064 | 0.001 | 0.081 | 0.009 | 0.068 | 0.002
2007 | June 0.673 | 0.002 | 0.262 | 0.005 0.119 0.000 0.073 | 0.023 | 0.077 | 0.001 | 0.059 | 0.002
2007 | July 0.595 | 0.071 | 0.291 | 0.040 0.141 0.044 0.060 | 0.026 | 0.106 | 0.025 | 0.078 | 0.026
2007 | August 0.560 | 0.051 | 0.257 | 0.075 0.141 0.058 0.151 | 0.137 | 0.074 | 0.013 | 0.100 | 0.083
2007 | September | 0.456 | 0.053 | 0.136 | 0.076 0.078 0.033 0.083 | 0.096 | 0.068 | 0.043 | 0.065 | 0.090
2007 | October 0.222 | 0.062 | 0.044 | 0.001 0.045 0.029 0.040 | 0.011 | 0.028 | 0.001 | 0.029 | 0.003
2007 | November 0.084 | 0.006 | 0.016 | 0.013 0.012 0.002 0.013 | 0.000 | 0.010 | 0.001 | 0.015 | 0.005
NA = Not Available
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table F-7
Correlation Coefficients for ET Rate and Precipitation

Correlation Coefficient
for Precipitation and

ET Class ET Rate
Open Water 0.00
Bare Soil/Low Vegetation 0.60
Phreatophyte/Medium Vegetation 0.40
Wetland/Meadow 0.20
Playa/Moisture Soil 0.50
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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G.1.0 MAJOR SPRING DISCHARGE AND MUDDY RIVER
STREAM FLOW GAGE DATA

This appendix contains detailed data and information for the major springs of the study area and
historical stream flow measurements for two gaging stations located on the Muddy River. It isvery
important to note the relationship between al springs and seeps in the Muddy River Springs Area and
stream flow in the Muddy River. In fact, under predevelopment conditions, the stream flow gage
located on the Muddy River near Moapa measures total discharge from the springs and seeps located
upstream and surface water runoff. The information presented here was used to derive mean
predevel opment spring and stream flow rates.

G.1.1 Major Springs

The long-term mean discharge rates of major springs located in the study area are provided in this
section, followed by descriptions of the methods used to derive temperature-depth relationships
(geothermal gradients). These relationships were derived to support the depth estimates of the
aquifers feeding the regional springs.

G.1.1.1 Long-Term Mean Discharge

Spring information, including mean spring flow rates and standard deviations derived from individual
measurements, is listed in Table G-1. The individual, historical spring discharge measurements for
gaged springs in the study area have been reported in SNWA (2008). Most of these springs are
located in White River Valley, Pahranagat Valley, and the Muddy River Springs Area. Spring
discharge measurements for the Muddy River Springs Area are reported as stream flow
measurements on the Muddy River. Mean spring discharge estimates were also derived, using USGS
data (USGS, 2008), for some of the springs listed in Table G-1. These estimates are provided in
Table G-2.

G.1.1.2 Temperature-Depth Relationships

Temperature-depth relationships are used to estimate geothermal gradients. These relationships can
be used to estimate the average flow depth of water discharging from the regional springs. For this
method of depth estimation, groundwater temperatures measured at the surface are assumed to
represent subsurface temperatures at the source of the water. This section describes the estimates of
the geothermal gradients considered in this study. Estimates of the geothermal gradientsfor the study
area are available from severa sources, including Mifflin (1968), the Great Basin Center for
Geothermal Energy (UNR, 2008a and b), and thermal logs obtained from monitor wells drilled by
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table G-2
Statistics for USGS Discharge Measurements of Selected Springs
Number Average Annual | Discharge
HA Spring of Discharge Discharge STD
Number ID Local Number Site Name Measurements (gpm) (gpm)
195 1951901 | 195 N10 E70 33B Big Springs 2 4,547 89
195 1952001 | 195 (C-15-19) 31CB Warm Creek near Gandy, UT 2 7,451 127
207 2070901 | 207 N12 E61 02ACAB Preston Big Spring 9 3,519 278
209 2090501 | 209 S06 E61 06BBBB Ash Springs 3 7,831 800
209 2090401 | 209 SO5 E60 10ADBB Crystal Springs 3 5,724 73
215 2150301 | 215 S19 68E 07AB Blue Point Spring 8 247 10
215 2150201 | 215 S18 E67 12DD Rogers Spring 22 746 43
219 2190101 | 219 S14 E65 21BA Pederson East Spring 4 94 6
219 2190201 | 219 S14 E65 21BA Pederson Spring 17 101 11
219 2190501 | 219 S14 E65 16DA Muddy Spring 20 3,450 227

Source: USGS (2008)

SNWA. These methods are described, followed by the application of the selected method to the
springslisted in Table G-1.

G.1.1.2.1 Interpretation by Mifflin (1968)
Mifflin (1968, p. 26) states that:

Ground-water temperatures in Nevada are generally higher, by at least 5 to 10°F,
than the mean annual air temperature at the point of sample. [and that] ...within
Nevada, ground-water temperatures observed in the 40's or 50's °F (temperatures
which closely approximate mean annual air temperature) are most frequently
found in the areas where saturation is relatively shallow, and active recharge to the
system is often nearby or in the immediate vicinity of observation points.

These statements imply that the temperature of groundwater at the sampling point must be larger than
about 45°F (mean air temperature in Nevada) to be affected by the geothermal gradient.

Mifflin (1968, p. 27) also states that:

Many geothermal gradients could be illustrated in Nevada by picking the area.
However, it seems likely that the gradients of 1°F to 2°F per 100 ft of depth are
more common than 3°F per 100 feet or more.

Mifflin’s interpretations of the mean geothermal gradient in Nevada may be depicted by three linear
relationships of temperature versus depth that represent the mean trend and minimum and maximum
trends. For the line representing the mean trend, the slope of the line is the average of the prevailing
gradients in Nevada (i.e., 1.5°F per 100 ft or the middle of the range cited by Mifflin [1968]: 1°F to
2°F per 100 ft of depth). The intercept is the average air temperature in Nevada (i.e., 45°F or the
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middle of the range cited by Mifflin[1968]: 40°F to 50°F). Thelower and upper ends of the ranges of
thermal gradients and the mean air temperature provided by Mifflin (1968) form the basis of the
minimum and maximum trends (Figure G-1).

300

250 f -

200 -

Temperature (°F)
o
1S

100 +------"-"-"-"-"F - T - o™ — -~ -~ - — - - -
o= Minimum Temperature

Average Temperature

U ==Maximum Temperature |~ ~ 7

0 2,000 4,000 6,000 8,000 10,000 12,000
Depth (ft)

Source: Interpreted from Mifflin (1968)
Figure G-1
Mifflin Geothermal Gradient Trends in Nevada

G.1.1.2.2 Great Basin Center Data

The Great Basin Center for Geothermal Energy is part of UNR. In support of research in the field of
geothermal energy, the center conducts data compilation and analysis activities. Datatypes of interest
include geologic, geochemical, geodetic, geophysical, and tectonic data. Data analysis products
include maps and databases. Of particular interest to this study is the geochemistry database (UNR,
2008a) and the Temperature Gradient Map of the Great Basin (UNR, 2008D).

The geochemical database contains various types of information for fluids from wells and springsin
the Great Basin. Hole depths and their respective water temperatures for boreholes located in Nevada
were used to estimate a geothermal gradient for this study. Data points with temperatures less than
70°F and depths less than 100 m (328 ft) were first removed from the data set. The selected data are
listed in Table G-3 and shown in blue on Figure G-2. A linear regression line through the datais also
shown in blue on Figure G-2.

Average values of the geothermal gradient were derived from the Temperature Gradient Map of the
Great Basin for each of the basins of the study area. The derived values are listed in Table G-4. The
basin geothermal gradient values were averaged to obtain a mean value for the study area. The mean
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table G-3
Well Temperatures and Depths from UNR Great Basin Center for Geothermal Energy
Hole Hole
Depth | Depth | Temperature | Temperature

Well Name County (m bgs) | (ft bgs) (°C) (°F)
Nellis 1 USAF Clark 244 801 24 75
Nellis 12 (C) USAF Clark 305 1,001 25 77
Nellis 12 (C) USAF Clark 305 1,001 26 79
Nellis 13 (B) USAF Clark 212 696 24 75
NWIS Well 209 S13 E63 23DD 1 Clark 204 669 34 93
NWIS Well 209 S13 E63 23DD 1 Clark 204 669 36 97
NWIS Well 212 10 E60 04DA8 2 curk | o2 | 781 | 23 73
NWIS Well 215 S18 E63 14CBAC1 Clark 210 689 26 79
NWIS Well 215 S20 E64 29DADB1 Clark 149 489 30 86
NWIS Well 216 S18 E63 05AADB1 Clark 603 1,978 27 81
NWIS Well 216 S18 E63 11AAA 1 Clark 152 499 24 75
Railroad Well - Farrier, NV Clark 110 361 23 73
USAF Lake Mead 3 Clark 313 1,027 25 77
USAF Lake Mead 3 Clark 313 1,027 25 77
USAF Lake Mead 4 Clark 268 879 28 82
USBLM SHV-1 Clark 280 919 25 77
USFWS DR-1 Clark 283 932 22 72
USFWS DR-1 Clark 284 932 25 77
USFWS SBH-1 Clark 220 722 29 84
USGS CSV-1 Clark 233 764 30 86
USGS CSV-2 Clark 146 479 27 81
USGS CSV-2 Clark 146 479 29 84
USGS CSV-3 Clark 238 781 41 106
USGS-MX CE-DT-5 Clark 192 630 36 97
USGS-MX CE-DT-6 Clark 286 938 34 93
North Dry Lake USGS-MX Lincoln 730 2,395 30 86
NWIS Well 181 NO3 E63 03DCC 1 Lincoln 729 2,392 28 82
NWIS Well 205 S04 E66 12AADC1 Lincoln 119 390 28 82
USGS Well VF-1, Desert NWR Lincoln 218 715 28 82
Coal Valley Well USGS MX Nye 560 1,837 23 73
Coal Valley Well USGS MX Nye 560 1,837 23 73
Hans L. Anderson Water Well White Pine 317 1,040 26 79
Henroid Well, D Henroid Ranch White Pine 183 600 32 90
Shell Oil Co. NE Cherry Creek Unit No.1 Well White Pine 2,562 8,406 151 304
USBLM Well, Shoshone Ponds White Pine 124 407 24 75
USBLM Well, Shoshone Ponds White Pine 134 440 24 75
Well at Alligator Ridge White Pine 201 659 34 93

Source: UNR (2008a)
NWIS = National Water Information System

Appendix G G-7

SE ROA 50693
JA_16094



350
300 - S ®
250 -
&
® 200
=
s
8150 { -~
£
(H)
=
100 +--2 - A~ Great Basin Geothermal Grid | --
¢ Great Basin Hole Data
B0 67— - -
Linear (Great Basin Hole Data)
O T T T T T
0 2,000 4,000 6,000 8,000 10,000 12,000
Depth (ft bgs)

Source: Interpreted from Great Basin Center Data (UNR, 2008b)
Figure G-2
Great Basin Center Geothermal Gradient Trends

geothermal gradient calculated by this method is about 0.035°F/ft. This value was used to generate
the corresponding temperature-depth relationship shown in green on Figure G-2.

G.1.1.2.3 SNWA Monitor Well Thermal Logs

SNWA conducted thermal logging in the monitor wells drilled as part of the Project. Their locations
are provided on Figure A-1 (Appendix A). The thermal logs are shown on Figure G-3. These
thermal logs were conducted before the wells were developed and conditions in the wells stabilized.
Thus, groundwater was <till mixed with drilling fluids, which may have resulted in cooler
temperatures during the measurement period (Eastman, 2007athrough g). A mean temperature-depth
relationship was derived from these thermal logs by averaging the temperatures at each depth. The
resulting relationship is shown on Figure G-4.

G.1.1.3 Spring Source Depth Estimates

Source aquifer depths were estimated for the selected regional and intermediate springs using the
mean geothermal gradient interpreted by Mifflin (1968). Ranges of source depths were estimated
when ranges of spring flow temperatures were available. The results are provided in Table G-5.
These estimates constitute initial estimates only.
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table G-4
Average Basin Geothermal Gradients from
the Temperature Gradient Map

HA Mean Gradient Mean Gradient Mean Gradient
Number (°C/km) (°F/km) (°F/ft)
171 36.0 96.8 0.0295
172 41.3 106.3 0.0324
174 44.1 111.4 0.0339
175 43.1 109.7 0.0334
178B 49.2 120.6 0.0368
179 52.3 126.1 0.0384
180 37.8 100.1 0.0305
181 44.0 111.2 0.0339
182 48.1 118.6 0.0362
183 48.6 119.5 0.0364
184 50.0 121.9 0.0372
185 46.6 116.0 0.0353
194 38.0 100.4 0.0306
195 42.5 108.4 0.0330
196 43.5 110.3 0.0336
198 51.7 125.1 0.0381
199 50.3 122.5 0.0373
200 51.1 123.9 0.0378
201 48.3 118.9 0.0362
202 48.6 119.6 0.0364
203 46.9 116.4 0.0355
204 52.8 127.1 0.0387
205 49.8 121.7 0.0371
206 49.7 121.4 0.0370
207 46.3 115.4 0.0352
208 38.5 101.2 0.0308
209 42.3 108.2 0.0330
210 46.9 116.4 0.0355
212 44.6 112.3 0.0342
215 44.9 112.9 0.0344
216 49.0 120.2 0.0366
217 43.5 110.4 0.0336
218 49.3 120.8 0.0368
219 43.9 111.0 0.0338
220 46.0 114.8 0.0350
258 61.0 141.8 0.0432

Source: UNR (2008b)
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table G-5

Spring Source Depths Estimated Using Mifflin’s Mean Geothermal Gradient

(Page 1 of 2)

Temperature | Temperature Source
HA Spring Range Range Depth Range
Number ID Site Name Temperature (°C) (°F) (ft bgs)
Regional Springs

195 1953101 | Wilson Hot Spring 1 Hot 60 141 6,394
195 1953102 | Wilson Hot Spring 2 Hot 56 132 5,806

195 1953103 | Wilson Hot Spring 3 Hot 59 138 6,202

195 1953104 | Wilson Hot Spring 4 Hot 61 141 6,406

195 1953105 | Wilson Hot Spring 5 Hot 60 140 6,334
203 2030101 | Panaca Spring Warm NA NA NA

207 2070501 | Hot Creek Spring Warm 32 90 2,974

207 2071901 | Moon River Spring NA 33 91 3,094
207 2071101 | Moorman Spring Hot 37 99 3,622
207 2070901 | Preston Big Spring Warm 21 70 1,660

209 2090501 | Ash Springs Hot 32 90 2,974
209 2090401 | Crystal Springs Warm 28 82 2,434
209 2090101 | Hiko Spring Warm 27 80 2,356

219 2190401 | Baldwin Spring Warm 290 33 84 t0 91 2,614 to 3,094
219 2190301 | Jones Spring Warm 291to0 33 841091 2,614 to 3,094
219 2191701 | M-10 Warm 29t0 33 841091 2,614 to 3,094
219 2190701 | M-11 Warm 29to 33 84t091 2,614 to 3,094
219 2190801 | M-12 Warm 29to 33 84t091 2,614 to 3,094
219 2190901 | M-13 Warm 29to 33 84t091 2,614 to 3,094
219 2191001 | M-15 Warm 29to 33 84t091 2,614 to 3,094
219 2191101 | M-16 Warm 29to 33 84t091 2,614 to 3,094
219 2191201 | M-19 Warm 29t0 33 84t091 2,614 to 3,094
219 2191301 | M-20 Warm 29t0 33 84t091 2,614 to 3,094
219 2190501 | Muddy Spring Warm 2910 33 84 to 91 2,614 to 3,094
219 2190101 | Pederson East Spring Warm 2910 33 841091 2,614 to 3,094
219 2190201 | Pederson Spring Warm 2910 33 841091 2,614 to 3,094
219 2191401 | Warm Springs East Warm 2910 33 841091 2,614 to 3,094
258 2580407 | Crater Spring NA NA NA NA

258 2580201 | Deadman Spring Warm 23 73 1,894
258 2580401 | House Spring Warm 22 72 1,774
258 2580404 | Lost Spring Warm 26 78 2,224

258 2580403 | Middle Spring Warm 24 76 2,074

258 2580408 | Mirror Spring NA NA NA NA

258 2580101 | North Springs Warm 24 74 1,954
258 2580406 | Percy Spring Warm 26 79 2,254
258 2580405 | South Spring Warm 24 76 2,044
258 2580402 | Thomas Spring Warm 26 79 2,254
258 2580301 | Walter Spring Cold 20 69 1,594
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Table G-5

Spring Source Depths Estimated Using Mifflin’s Mean Geothermal Gradient

(Page 2 of 2)

Temperature | Temperature Source
HA Spring Range Range Depth Range
Number ID Site Name Temperature (°C) (°F) (ft bgs)
Intermediate Springs
179 1792301 | Cherry Creek Hot Springs Hot 47 to 57 117 to 135 4,774 10 5,974
179 1792601 | Cold Spring Cold NA NA NA
179 1792001 | McGill Spring Warm 17 63 1,174
179 1792501 | Monte Neva Hot Springs Hot 77 171 8,422
184 1846401 | Blind Spring Cold 14 56 754
184 1847001 | Four Wheel Drive Spring Cold 15 58 898
184 1847101 | Keegan Spring Cold 13 56 706
184 1845901 | Layton Spring Cold 15 60 977
184 1847201 | Minerva Spring Cold NA NA NA
184 1845701 | North Millick Spring Cold 15 59 949
184 1846001 | North Spring Warm 23 73 1,858
184 1846601 | Osbhorne Springs Cold 13 56 718
184 1845801 | South Bastian Spring Cold 12 54 628
184 1845802 | South Bastian Spring 2 Cold 14 58 874
184 1845702 | South Millick Spring Cold 13 56 733
184 1847401 | Stonehouse Spring Cold 4 38 Negative
184 1847501 | The Seep Warm 24 74 1,966
184 1847701 | Unnamed 5 Spring Cold 14 58 841
184 1845601 | Willard Springs Cold 8 46 81
184 1845501 | Willow Spring Warm 13 56 709
195 1953202 | (C-11-14)4bbb-S1 Cold 18 64 1,294
195 1951901 | Big Springs Cold 17 62 1,156
195 1952401 | Caine Spring Cold 14 58 862
195 1953201 | Cold Spring Cold NA NA NA
195 1953401 | Foote Res. Spring NA NA NA NA
195 1953701 | Kell Spring NA NA NA NA
195 1952701 | Knoll Spring Cold 20 68 1,498
195 1954001 | Twin Spring Cold 20 68 1,534
195 1953901 | Unnamed Spring NA NA NA NA
195 1952001 | Warm Creek near Gandy, UT Warm 26 80 2,305
207 2070601 | Arnoldson Spring Warm 22 72 1,786
207 2071401 | Butterfield Spring NA NA NA NA
207 2070701 | Cold Spring Warm 22 71 1,738
207 2072001 | Emigrant Springs NA 20 68 1,534
207 2071303 | Flag Springs 1 Warm NA NA NA
207 2071302 | Flag Springs 2 Warm NA NA NA
207 2071301 | Flag Springs 3 Warm NA NA NA
207 2071502 | Hardy Spring NW Cold 17 63 1,174
207 2071501 | Hardy Springs Cold 17 63 1,174
207 2071001 | Lund Spring Cold 19 66 1,414
207 2071601 | Nicolas Spring Warm 70 159 7,594
209 2090701 | Brownie Spring NA NA NA NA
215 2150301 | Blue Point Spring Warm 27 80 2,338
215 2150201 | Rogers Spring Warm 27 80 2,338
258 2580601 | Cane Spring Cold 20 68 1,534
NA = Not available
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

G.1.2 Selected Muddy River Stream Gages

Mean annual stream flow measurements for the Muddy River near Moapa gage and the Muddy River
near Glendale gage are provided in Table G-6. The mean annua stream flow values adjusted to
remove water from flooding events are also provided in this table.

A graph of the adjusted stream flow rates at the Glendal e gage and the M oapa gage for the periods of
record shows a great correlation between the two gaging stations (Figure G-5). The data for the
common period of record 1951 to 2004 (Table G-6), not including 1984, were used to derive a
correlation coefficient between the two stations. A correlation coefficient of 0.92 was derived
indicating a high degree of correlation between adjusted stream flow at the two gages.

Table G-6
Stream Flow Measurements (afy)
on the Muddy River near Moapa and Glendale
(Page 1 of 3)

Vear Mean Actual Value Mean Adjusted Value?
Moapa Gage Glendale Gage Moapa Gage Glendale Gage
1913 13,343°
1914 34,438 - 34,380 -
1915 13,625°
1916 33,819 - 33,819 -
1917 34,057 - 34,057 -
1918 --- - - -
1944 33,109 - 32,938 -
1945 33,938 - 33,761 -
1946 34,568 34,568
1947 33,583 - 33,583 -
1948 34,057 - 34,057 -
1949 33,454 33,454
1950 33,585 - 33,585 -
1951 33,920 31,908 33,920 31,542
1952 33,840 38,922 33,793 33,431
1953 33,325 33,305 33,251 33,253
1954 33,317 31,720 33,317 31,433
1955 34,184 39,708 33,899 34,215
1956 33,216 31,628 33,216 31,296
1957 34,507 34,935 33,928 33,841
1958 35,929 34,969 35,645 32,550
1959 35,384 32,598 35,100 32,208
1960 34,666 32,077 34,578 31,932
1961 33,493 43,967 32,646 33,505

Appendix G

G-13

SE ROA 50699

JA_16100



G-14

Table G-6

Stream Flow Measurements (afy)
on the Muddy River near Moapa and Glendale
(Page 2 of 3)

Vear Mean Actual Value Mean Adjusted Value?
Moapa Gage Glendale Gage Moapa Gage Glendale Gage

1962 32,212 32,401 32,158 31,585
1963 32,335 29,056 32,335 28,810
1964 32,613 29,026 32,613 28,815
1965 31,419 31,999 31,327 31,258
1966 30,296 30,347 29,836 28,044
1967 33,333 32,749 30,416 29,127
1968 29,477 31,860 29,393 30,826
1969 30,907 39,462 30,507 30,543
1970 29,604 32,633 29,604 30,566
1971 27,602 30,784 27,412 29,846
1972 31,552 30,446 30,161 28,197
1973 32,928 32,039 31,643 29,582
1974 29,352 27,902 29,352 27,856
1975 28,874 29,422 28,834 28,519
1976 29,883 30,177 28,622 28,783
1977 27,130 27,645 26,170 25,601
1978 26,200 40,108 25,703 27,143
1979 28,370 30,641 26,926 26,184
1980 28,927 33,796 28,550 28,107
1981 27,452 32,463 27,176 24,677
1982 27,331 26,838 27,047 26,432
1983 28,493 39,796 28,104 27,704
1984 30,786 - 26,371 -

1985 27,662 26,568 27,579 26,220
1986 26,507 27,141 26,438 26,631
1987 27,247 27,026 27,247 27,027
1988 28,792 27,871 28,268 26,650
1989 24,397 22,270 24,397 22,269
1990 26,490 29,909 24,710 23,393
1991 26,111 25,968 25,801 24,371
1992 26,418 26,595 26,335 25,504
1993 28,668 39,265 27,563 26,992
1994 28,521 25,144 28,431 25,145
1995 25,770 23,760 25,770 23,760
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table G-6
Stream Flow Measurements (afy)
on the Muddy River near Moapa and Glendale
(Page 3 of 3)

Mean Actual Value Mean Adjusted Value?
vear Moapa Gage Glendale Gage Moapa Gage Glendale Gage
1996 24,332 22,663 24,332 22,663
1997 23,560 22,015 23,560 21,731
1998 25,210 39,777 24,782 25,652
1999 25,230 27,019 24,994 26,930
2000 25,073 28,862 24,727 25,125
2001 23,276 22,848 23,276 22,802
2002 22,665 22,919 22,665 22,919
2003 22,961 22,931 22,961 22,931
2004 22,059 23,266 22,059 23,266

aRemoved water from flooding events.
bReported values were identified as outliers.

Adjusted Stream Flow Rates at the Glendale and Moapa Gages on the Muddy River

40,000
35000 1 -----——g - A = Mg~ ———————————— ]
: . o L S
» SONTE »
H Em [ | N

30,000 f--------mmmm e moety
- " AT S
2 25,000 | e !'
s I
@ 20,000 f----mmmm o
x
3
2 15000 -
T

10,000 +----1 # Adjusted Flow Rate at MoapaGage |- |

B Adjusted Flow Rate at Glendale Gage
5,000 f----1 T T
1900 1920 1940 1960 1980 2000 2020
Year
Figure G-5
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

H.1.0 INTERBASIN FLOW

This appendix contains reported estimates of interbasin flow for the basins in the study area and
estimates of subsurface flow through the external boundary of the model area using the Monte Carlo
method.

H.1.1 Reported Estimates of Interbasin Flow

A literature review was conducted to compile estimates of interbasin flow for al basins in the study
area to support the discussion presented in the main text. The locations of interbasin flow are shown
in Figure H-1. The reported values and overall ranges of flow across each segment boundary are
presented in Table H-1.

H.1.2 External Boundary Flow—Monte Carlo Method

Interbasin flow volumes across most external boundaries of the model area were estimated using
Darcy’s equation and the Monte Carlo method. The method consisted of conducting Monte Carlo
simulations using Crystal Ball software to generate stochastic estimates of total flux across each
flow-boundary segment.

The analysis process included the following steps:

1. Began with the approximate locations of flow-boundary segments where groundwater flow is
permissible (SNWA, 2008). Permissible means only that the flow-boundary segment is
permeable, not that flow actually occurs through it under predevelopment conditions.

2. Extracted the RMU column from the simplified hydrogeologic framework model for each
permeabl e flow-boundary segment.

3. Prepared input data (see Section H.1.3):

- Estimated mean transmissivities and standard deviations using the available hydraulic head
data.

- Using the surficial RMU map and the available potentiometric maps, estimated the flow
width of each permeable boundary segment.

- Using the same maps as above and measured water levels, estimated the hydraulic gradient
across each permeabl e flow-boundary segment.
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table H-1

Reported Volumes of Interbasin Flow in Study Area

(Page 1 of 7)

Location Interbasin Flow Range Interbasin Flow
Index? (afy) (afy) Sources
1 22,500 22,500 Nichols (2000)
800 Scott et al. (1971)
2 800 to 2,000 1,000 Harrill et al. (1988)
2,000 Nichols (2000)
M Harrill et al. (1988)
S Scott et al. (1971)
3 M to 7,000 2,130 t0 5,330 Frick (1985)
4,000 Nichols (2000)
7,000 Welch et al. (2008)
3,000 Glancy (1968)
4 3,000 to 8,000
8,000 Welch et al. (2008)
5 3,000 3,000 Harrill et al. (1988)
2,000 Harrill et al. (1988)
6 2,000 to 12,000 6,000 Nichols (2000)
12,000 Welch et al. (2008)
3,500 Carlton (1985)
10,000 Hood and Rush (1965)
7 3,500 to 29,000 10,000 Gates and Kruer (1981)
10,000 Harrill et al. (1988)
29,000 Welch et al. (2008)
1,000 Harrill et al. (1988)
8 1,000 to 8,500
8,500 Carlton (1985)
9 ? ? Harrill et al. (1988)
? Harrill et al. (1988)
10 ? to 18,500 15,0007 Gates and Kruer (1981)
18,500 Carlton (1985)
? Harrill et al. (1988)
5,000 Welch et al. (2008)
11 ?1t0 12,700 8,000 Thomas et al. (2001)
10,000 Nichols (2000)
12,700 Prudic et al. (1995)
12 3,600 3,600 Nichols (2000)
13 3,000 3,000 Scott et al. (1971)
-2,000 Welch et al. (2008)
14 -2,000 to 2,000 2,000 Harrill (1971)
2,000 Harrill et al. (1988)
15 6,000 6,000 Carlton (1985)
25,500 Carlton (1985)
16 25,500 to 27,000 -
27,000 Harrill et al. (1988)
4,000 Nichols (2000)
17 4,000 to 16,000
16,000 Welch et al. (2008)
18 ? ? Harrill et al. (1988)
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Table H-1

Reported Volumes of Interbasin Flow in Study Area

(Page 2 of 7)

Location Interbasin Flow Range Interbasin Flow
Index? (afy) (afy) Sources
8,000 Eakin (1961)
8,000 Eakin (1966)
8,000 Harrill et al. (1988)
8,000 Scott et al. (1971)
19 8,000 to 19,000 12,000 LVVWD (2001)
12,000 Thomas et al. (2001)
14,000 Nichols (2000)
16,900 Thomas and Mihevc (2007)
19,000 Welch et al. (2008)
20 16,000 16,000 Welch et al. (2008)
21 14,000 14,000 Welch et al. (2008)
5,500 Carlton (1985)
22 5,500 to 9,000 -
9,000 Harrill et al. (1988)
23 8,000 8,000 Welch et al. (2008)
? Harrill et al. (1988)
24 ? to 700 -
700 Nichols (2000)
15,000 Hood and Rush (1965)
25 15,000 to 42,000 :
22,000 to 42,000 Harrill et al. (1988)
16,527 to 27,145 Kirk and Campana (1990)
25,000 Eakin (1966)
25,000 Scott et al. (1971)
28,800 Thomas and Mihevc (2007)
26 16,527 to 63,000
35,000 LVVWD (2001)
35,000 Thomas et al. (2001)
51,200 Nichols (2000)
63,000 Welch et al. (2008)
27 30,000 30,000 Scott et al. (1971)
28 4,000 4,000 Welch et al. (2008)
-4,250 Harrill et al. (1988)°
29 -4,250 to 4,000
4,000 Carlton (1985)
4,250 Harrill et al. (1988)°
30 4,250 to 26,500
26,500 Carlton (1985)
-5,500 Harrill et al. (1988)°
31 -5,500 to 16,500
16,500 Carlton (1985)
32 20,000 20,000 Welch et al. (2008)
5,500 Harrill et al. (1988)°
33 5,500 to 30,000
30,000 Carlton (1985)
4,000 Thomas and Mihevc (2007)
34 4,000 to 11,180 9,000 Welch et al. (2008)
8,571 to 11,180 Kirk and Campana (1990)
H-4
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table H-1

Reported Volumes of Interbasin Flow in Study Area

(Page 3 of 7)

Location Interbasin Flow Range Interbasin Flow
Index? (afy) (afy) Sources
4,000 Rush and Kazmi (1965)
4,000 Gates and Kruer (1981)
4,000 Harrill et al. (1988)
35 4,000 to 33,000
4,000 Scott et al. (1971)
10,000 Nichols (2000)
33,000 Welch et al. (2008)
36 29,000 29,000 Welch et al. (2008)
37 10,000 10,000 Scott et al. (1971)
14,000 Eakin (1962)
14,000 Eakin (1966)
38 14,000 to 15,000 14,000 Harrill et al. (1988)
14,000 Scott et al. (1971)
15,000 LVVWD (2001)
3,000 Rush and Eakin (1963)
3,000 Harrill et al. (1988)
3,000 Scott et al. (1971)
39 3,000 to 17,000 -
5,600 Thomas and Mihevc (2007)
17,000 LVVWD (2001)
17,000 Thomas et al. (2001)
9,400 Thomas and Mihevc (2007)
40 9,400 to 15,000
15,000 Thomas et al. (2001)
6,400 Thomas and Mihevc (2007)
17,000 Thomas et al. (2001)
32,000 LVVWD (2001)
41 6,400 to 40,000 39,000 Welch et al. (2008)
40,000 Eakin (1966)
40,000 Harrill et al. (1988)
40,000 Scott et al. (1971)
42 1,500 1,500 Carlton (1985)
43 2,000 2,000 Thomas and Mihevc (2007)
M Scott et al. (1971)
M Harrill et al. (1988)
44 M to 15,000 7,200 Thomas and Mihevc (2007)
15,000 LVVWD (2001)
15,000 Thomas et al. (2001)
20,000 LVVWD (2001)
45 20,000 to 27,000 -
27,000 Thomas and Mihevc (2007)
8,000 Eakin (1966)
8,000 Harrill et al. (1988)
8,000 Scott et al. (1971)
46 8,000 to 23,100
14,000 LVVWD (2001)
14,000 Thomas et al. (2001)
23,100 Thomas and Mihevc (2007)
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Table H-1
Reported Volumes of Interbasin Flow in Study Area

(Page 4 of 7)
Location Interbasin Flow Range Interbasin Flow
Index? (afy) (afy) Sources
0 Scott et al. (1971)
1,000 Harrill et al. (1988)
47 0 to 16,000 8,300 Thomas and Mihevc (2007)
16,000 LVVWD (2001)
16,000 Thomas et al. (2001)
9,000 Harrill et al. (1988)
9,000 Scott et al. (1971)
48 9,000 to 28,000 14,900 Thomas and Mihevc (2007)
28,000 LVVWD (2001)
28,000 Thomas et al. (2001)
0 Scott et al. (1971)
7,900 Thomas and Mihevc (2007)
49 0 to 16,000
16,000 LVVWD (2001)
16,000 Thomas et al. (2001)
7,400 Thomas and Mihevc (2007)
50 7,400 to 16,000 16,000 LVVWD (2001)
16,000 Thomas et al. (2001)
1,216 San Juan et al. (2004
51 1,216 to 3,758
3,758 Faunt et al. (2004)
10,000 Eakin (1963)
10,000 Eakin (1966)
52 10,000 to 20,000 10,000 Harrill et al. (1988)
10,000 Scott et al. (1971)
20,000 Thomas et al. (2001)
1,330 to 1,970 Kirk and Campana (1990)
39,000 Thomas et al. (2001)
42,000 Eakin (1966)
53 1,330 to 59,000 42,000 Harrill et al. (1988)
42,000 Scott et al. (1971)
45,300 Thomas and Mihevc (2007)
59,000 LVVWD (2001)
M Harrill et al. (1988)
8,900 Thomas and Mihevc (2007)
54 M to 36,000
27,000 LVVWD (2001)
36,000 Thomas et al. (2001)
M Scott et al. (1971)
55 M to 9,000
9,000 Thomas et al. (2001)
5,000 Eakin (1966)
5,000 Harrill et al. (1988)
5,000 Scott et al. (1971)
56 5,000 to 17,700
12,000 LVVWD (2001)
12,000 Thomas et al. (2001)
17,700 Thomas and Mihevc (2007)
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table H-1

Reported Volumes of Interbasin Flow in Study Area

(Page 5 of 7)

Location Interbasin Flow Range Interbasin Flow
Index? (afy) (afy) Sources
9,000 LVVWD (2001)
57 9,000 to 9,700 -
9,700 Thomas and Mihevc (2007)
6,000 Eakin (1966)
58 6,000 6,000 Harrill et al. (1988)
6,000 Scott et al. (1971)
811 San Juan et al. (2004)
59 811 to 11,307
11,307 Faunt et al. (2004)
16,000 Thomas et al. (2001)
60 16,000 to 24,100 16,000 LVVVWD (2001)
24,100 Thomas and Mihevc (2007)
22,300 Thomas and Mihevc (2007)
27,247 to 29,370 Kirk and Campana (1990)
28,000 LVVWD (2001)
61 22,300 to 35,000 28,000 Thomas et al. (2001)
35,000 Eakin (1966)
35,000 Scott et al. (1971)
35,000 Harrill et al. (1988)
62 S S Scott et al. (1971)
M Scott et al. (1971)
M Harrill et al. (1988)
63 M to 6,000 4,200 Thomas and Mihevc (2007)
6,000 LVVWD (2001)
6,000 Thomas et al. (2001)
5,513 San Juan et al. (2004)
64 ?t0 14,023 14,023 Faunt et al. (2004)
? Harrill et al. (1988)
2,400 to 7,200 Bugo (2002)
4,000 Thomas and Mihevc (2007)
65 2.400 to 13,000 8,000 Thomas et al. (1996)
5,500 to 9,000 _l?lhrlgrigg ;a;wlpzalggé)w%) as reported by
13,000 Prudic et al. (1995)
28,000 Thomas et al. (1996)
37,000 Eakin (1966)
37,000 Harrill et al. (1988)
66 28,000 to 37,700 37,000 LVVWD (2001)
37,000 Scott et al. (1971)
37,000 Thomas et al. (2001)
37,700 Thomas and Mihevc (2007)
32,000 LVVWD (2001)
67 32,000
32,000 Thomas et al. (2001)
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Table H-1

Reported Volumes of Interbasin Flow in Study Area

(Page 6 of 7)

Location Interbasin Flow Range Interbasin Flow
Index? (afy) (afy) Sources
M Rush (1968)
M Scott et al. (1971)
1,700 Thomas and Mihevc (2007)
68 M to 41,804 32,000 LVVWD (2001)
32,000 Thomas et al. (2001)
34,700 Eakin (1966)
35,843 to 41,804 Kirk and Campana (1990)
5,300 Thomas and Mihevc (2007)
7,000 Rush (1968)
69 5,300 to 7,000 -
7,000 Harrill et al. (1988)
7,000 Scott et al. (1971)
me Rush (1968)
Me Harrill et al. (1988)
70 M to 41,000 6,000 Thomas et al. (2001)
18,900 Thomas and Mihevc (2007)
41,000 LVVWD (2001)
15,000 Thomas and Mihevc (2007)
71,73,74 15,000 to 16,000 16,000 Thomas et al. (2001)
16,000 LVVWD (2001)
72 ? ? Harrill et al. (1988)
75 5,000 5,000 Harrill et al. (1988)
1,100 Scott et al. (1971)
11,100¢ Rush (1968)
76 1,100 to 49,000 15,300 Thomas and Mihevc (2007)
26,000 Thomas et al. (2001)
49,000° LVVWD (2001)
? LVVWD (2001)
M Harrill et al. (1988)
300 Thomas et al. (2001)
77 ?,M to 15,000
400 Rush (1968)
400 Scott et al. (1971)
15,000 Thomas and Mihevc (2007)
? LVVWD (2001)
800 Rush (1968)
800 Scott et al. (1971)
78 ? to 17,000 -
1,000 Harrill et al. (1988)
15,100 Thomas and Mihevc (2007)
17,000 Thomas et al. (2001)
M Scott et al. (1971)
2,000 Thomas and Mihevc (2007)
79 M to 4,000
2,300 LVVWD (2001)
4,000 Thomas et al. (2001)
80 1,378 1,378 San Juan et al. (2004)
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table H-1
Reported Volumes of Interbasin Flow in Study Area
(Page 7 of 7)

Location Interbasin Flow Range Interbasin Flow
Index?® (afy) (afy) Sources
600 Thomas and Mihevc (2007)
81 600 to 1,000
1,000 LVVWD (2001)
400 Rush (1968)
82 400 to 1,200 -
1,200 Harrill et al. (1988)
M Scott et al. (1971)
83 M to 2,000
2,000 Thomas et al. (2001)
84 4,000 4,000 Kirk and Campana (1990)

3L ocation of interbasin flow is shown on Figure H-1 with arrows.

bThe reported interbasin flow was evenly distributed among multiple flowpaths.

This value doesn’t include stream flow.

9This value includes 10,000 afy of stream flow that is considered as groundwater here (Rush, 1968).

€This value includes 1,000 afy outflow from Black Mountains Area to Lake Mead.
? = Flow volume not specified.
M = Minor quantity. An amount which is either less than 500 afy, or small in comparison to other quantities in the particular hydrologic area (Scott et al., 1971).
S = Some quantity. Sufficient information is not currently available to make an estimate (Scott et al., 1971).

4. Set up an Excel® file containing al data necessary to calculate fluxes in the Crystal Ball
software.

5. Ran 10,000 Monte Carlo ssimulations using the Crystal Ball software.

H.1.3 Description of Input Data Preparation

Estimates of lateral interbasin flow were derived for all external boundaries, except Las Vegas Valley,
using the available information. The required data consist of estimates of the probability distributions
of the transmissivity, flow widths, and hydraulic gradients across the flow-boundary segment.

Probability distributions of transmissivities were derived from the hydraulic-property database
described in Appendix C. Recordsin the database containing transmissivity values were extracted to
form a data subset. If several records were available for a single location, they were reduced to one
value by averaging. The reduced data set was then sorted by RMU, and the derived data were
analyzed by RMU.

For RMUs with sufficient constant-rate pumping tests, records of other types of tests were removed
from the data set. All records were kept for all other RMUs. Except for the carbonate aquifer, the
remaining data sets were used for the statistical analyses. For the carbonate aquifers, low and high
values were eliminated from the reduced data set prior to the analysis. Low transmissivity values
represent matrix-only carbonate rocks, and high transmissivity values represent faults or highly
fractured carbonate rocks. For RMUs with sufficient data records, the probability distributions were
confirmed to be log-normal. The statistics, means, and standard deviations were as calculated. For
other RMUS, the probability distributions were assumed to also be log-normal.

The flow widths across permeable segments of the model boundary were identified from a
combination of information: (1) the map of permissible flow segments, (2) the regional
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potentiometric map (Prudic et a., 1995), and (3) the hydrogeology map including the locations of
major structural features. The three maps were superposed, and the most probable flow width was
identified and measured. The probability distribution was assumed to be norma with COV values
ranging from 0.5 to 1.

Hydraulic gradients across permeable-segment boundaries were derived from a combination of
water-level data and previous interpretations of the potentiometric surface. Potentiometric contours
for the entire region (Prudic et al., 1995) were used to identify the approximate directions of
groundwater flow. Water-level data were used to actually calculate the hydraulic gradients. To
approximate the regional hydraulic gradient between basins, water levels from the central parts of the
basins were used rather than water levels on the mountain blocks. Because of the scarcity of
carbonate wells, water levels in the central parts of the basins were assumed to represent regional
potentiometric levels, i.e., carbonate aquifer is connected to alluvial aquifers. Also, water levelsfrom
groups of wells rather than single-well measurements were preferred to capture the magnitude of the
mean gradient. The probability distribution was assumed to be normal with COV values ranging
between 0.5 and 1.

The input data are presented in Table H-2. The last column is not part of the input but provides a
deterministic Darcy flux value of the flow rate across each boundary segment and each RMU, using
the listed input data.
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.1.0 FLow SYSTEM BUDGET SOLUTIONS

The groundwater-balance method was used to derive recharge efficiencies and was implemented
using the Excel® Solver. The solver isdesigned to find optimal solutions to numerical problems such
as the one at hand, in which the main variables requiring a solution are the recharge efficiencies for
the flow systemsin the study area. The solver finds an optimal value for aformulain one cell of the
worksheet called the target cell. The solver workswith agroup of cellsthat are related, either directly
or indirectly, to the formulain the target cell. Vaues in these cells are called parameters, which the
solver adjusts to produce the desired result defined by the target-cell formula. Constraints can be
added to restrict the values of the parameters the solver uses. Additiona information on the Excel®
Solver, including examples, can be found in the Excel® 2003 version help menu and/or the
“Microsoft Excel® 2003 Bible” (Walkenbach, 2003).

Toinitialize and run the solver, the target cell, parameters, constraints, and initial conditions must first
be defined. To do so, the necessary data were compiled and analyzed to estimate values for these
inputs. Thisincluded compiling the following information and data:

Precipitation station data and a spatial distribution for the area encompassing the study area
Hydrologic data for the flow system to assist in defining constraints

Geologic information and data to assist in identifying likely areas of interbasin flow

Maps delineating groundwater discharge areas and ET classes

ET rate data, PET data, and a PET distribution encompassing the groundwater discharge areas
Estimates of boundary inflow and outflow

Digital elevation model

This section presents details on the application of the Excel® Solver and solution process used to
derive the groundwater budgets for each flow system in the study area. Also presented are the
estimated recharge volumes and comparisons to those reported in the literature and the resulting
detailed groundwater budgets.

[.1.1 Solver Application Process

The solver was used in conjunction with the PRISM precipitation grid (Section 6.0) and boundary
flow estimates (Section 8.0) to calculate recharge efficiencies for 1-in. precipitation intervals
(Section 9.0) and boundary fluxes from the flow systems. The derived recharge distribution, along
with estimates of interbasin flow at selected locations, were used to construct groundwater budgets
for individual basins within the flow systems. The data processing and analyses performed to
estimate these efficiencies, including the solver setup, targets, parameters, and constraints, are
described in the following sections.

Appendix | I-1

SE ROA 50721
JA_16122



[.1.1.1 Delineation of Areas of Potential Recharge

For the purpose of this study, areas of potential recharge are defined as areas where most of the
in-place recharge occurs and mountain-front runoff is generated. This area of potential recharge is
used to estimate the recharge distribution at the basin scale, not at the local scale. For example, the
recharge that may result from infiltration of mountain-front runoff is not distributed to the actual areas
where it may occur. For agiven basin, potential recharge is assumed to occur in al areas of agiven
basin except (1) the valley floor, (2) groundwater discharge areas, and (3) areas where the
precipitation islessthan 8 in.

The valley floor was delineated for each basin of the study area using the USGS DEM (USGS, 2006)
and was subsequently excluded as an area of potential recharge. Land-surface slopes were calculated
using the DEM grid, and the relatively flat areas of each basin were identified and excluded if the
slopes were less than 2 percent. Alluvial fans were not included in the delineation of the valley floor
areas because they are typically composed of coarse-grained material that can accommodate recharge
if the precipitation is significant (i.e., greater than 8 in.).

It was assumed that groundwater ET areas are not areas of potential recharge. Thisis consistent with
the calculation of estimated groundwater ET where the precipitation is deducted from the total ET
estimate. Removing the precipitation volume necessarily leads to the removal of any recharge that
may occur there.

It was also assumed that aminimum of 8 in. of precipitation is necessary before groundwater recharge
may occur. Thefirst 8 in. of precipitation are assumed to satisfy the soil-moisture deficit and lossesto
the atmosphere (ET) (Anderson et a., 1992). This assumption is consistent with the Maxey-Eakin
(1949) method, which assumes that recharge is zero below 8 in. of precipitation. Thus, areas
receiving less than 8 in. of precipitation are not considered to be areas of potential recharge.

The resulting potential recharge areas are depicted in Plate 1. The union of the valley floors,
groundwater discharge areas, and areas receiving less than 8 in. of precipitation are considered “ areas
of no recharge” only for the purpose of this report. As stated before, direct recharge from
precipitation may actually occur in these areas, depending on local conditions.

[.1.1.2 Preparation of Precipitation Data

The PRISM precipitation distribution serves as the basis for the solver calculations and the derivation
of the spatial distribution of recharge. The PRISM grid for the study area was contoured to generate
1-in. precipitation intervals starting from a minimum depth of 3 in. to the maximum depth occurring
within the flow system. Next, the area corresponding to each interval was calculated, and then
adjusted as necessary to exclude the areas of no recharge, as defined in the previous section. For each
basin, the adjusted areas were then exported to Excel® to create a table containing the precipitation
rate and corresponding area for each 1-in. interval within the basin. This table forms the basis of the
calculations performed by the solver.
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[.1.1.3 Solver Target

In the solver, the target is represented by the estimated value of total groundwater ET for a flow
system. The target cell contains a formula relating groundwater ET to the other components of the
budget as follows:

ETgW = Ry + Inflow —Outflow (Eq. 1-1)
where,
ETqw = Total groundwater ET for the flow system (afy)
Ry = Total recharge for the flow system (afy)
Inflow = Total groundwater inflow to the flow system (afy)
Outflow = Total groundwater outflow from the flow system (afy)

.L1.1.4 Solver Parameters

Parameters represent the flow system variables that require a solution. For this analysis, the primary
parameters are the recharge efficiencies and interbasin flow rates for selected basin boundaries of the
flow system. The parameter solutions are determined through an optimization process in which the
recharge efficiencies and boundary flows are adjusted within the predefined constraints, described in
Section 1.1.1.5, to ensure that the total recharge is equal to the sum of the total groundwater discharge
and outflow, less the groundwater inflow as shown in Equation |1-1 above.

Considering that the solution to the problem depends on many variables, but only a few of them are
known within reasonable bounds of uncertainty, the solution is nonunique, and many possible
representations exist. For example, the solver may identify solutions that are mathematically feasible
but not reasonable given what is understood about the physical aspects of the flow system. It is,
therefore, important to provide reasonable initial estimates for all parameters.

1.1.1.4.1 Recharge Efficiencies

Recharge efficiency, by definition, isthe ratio of recharge to precipitation. For thisanalysis, recharge
isexpressed as afunction of effective precipitation (Kumar and Seethapathi, 2002) as follows:

R = a(P-8)° (Eq. 1-2)
where,
R = Recharge (in./yr)
a = Power function constant
b = Power function exponent
P = Precipitation (in./yr)
P-8 = Effective precipitation (in./yr)
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For this analysis, it was assumed that precipitation contributes to recharge (effective precipitation),
starting at 8 in./yr where the effective precipitation and recharge are assumed to be zero. The
effective precipitation and recharge increases with increasing precipitation. This equation is also
similar to that of Contor (2004) and Anderson et al. (1992), except these authors expressrecharge as a
function of total precipitation rather than effective precipitation.

To calculate the recharge efficiencies for use in the solver, each side of Equation I-2 is divided by
precipitation, P, to yield the following equation expressing recharge efficiency:

b

Eff = [8X FF’)‘S ] (Eq. I-3)
where,
Eff = Recharge efficiency or R/P as afraction
a = Power function constant
b = Power function exponent
P = Precipitation (in./yr)
P-8 = Effective precipitation (in./yr)

Equation 1-3 was used in the solver for direct calculation of the recharge efficiencies. The primary
parameters are the coefficients of the power function (i.e., the constant a and the exponent b). Initial
estimates for these two primary parameters were derived from a power function derived from the
step-function defined by the standard Maxey-Eakin efficiencies. They are asfollows:

e Power function constant; a=8.0 x 10°
* Power function exponent: b = 3.62

Details on how these initial estimates were derived using the Maxey-Eakin recharge efficiencies are
provided in Appendix E of SNWA (2007).

.1.1.4.2 Interbasin Flow Volumes

The interbasin flow volumes for each flow system are the secondary solver parameters. Initial
estimates of the interbasin flow volumes for each flow system are presented in Section 8.0.

.1.1.5 Solver Constraints

Constraints were placed on the coefficients of the power function, the maximum recharge efficiency,
and the volumes of subsurface flow at the selected interbasin flow locations used as secondary
parameters in the solver. The common constraints are as follows:

» Power function constant, a is positive.
» Power function exponent, b is positive.
* Maximum recharge efficiency isless than or equal to 0.63.
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The constraint imposed on the recharge efficiency was derived from a literature review of maximum
recharge efficiencies estimated for the region of the study area (Watson et a., 1976). The maximum
reported value of 63 percent or 0.63 was selected as the constraint value.

[.1.2 Solution Process

The solution process includes two major steps: (1) the Excel® Solver was used to derive a recharge
distribution, and (2) the resulting recharge distribution was used to derive basin budgets.

[.1.2.1 Derivation of Recharge Distribution

The solver was used to inversely solve for the recharge efficiencies and the selected underflow
volumes using the target ET estimates, the parameters, and the constraints. Because there is more
than one unknown parameter, the derived solution is not unique. To converge to a solution, the solver
uses an iterative process and successive values of all parameters while seeking a solution. Values of
the primary parameters and the power function coefficients, a and b, are used to calculate recharge for
each 1-in. precipitation band. Thisrecharge valueisthen divided by precipitation to obtain arecharge
efficiency, whichin turn, is used to calculate recharge volumes. The calculated recharge volumes and
values of the secondary parameters are tested in the budget. Once the calculated recharge volumes
yield a total groundwater ET value that matches the target value, a solution is reached. The final
values of all parameters are part of the solution and are used to estimate the fina recharge
distribution.

[.1.2.2 Derivation of Basin Groundwater Budgets

The process of deriving a groundwater budget for each basin in aflow system is conducted in Excel®,
but outside of the solver. The solver provides arecharge distribution for each basin. Assuming that
each basin is under predevelopment conditions, a groundwater budget may be derived for each basin.
The process starts from the most up-gradient basin of the flow system and ends at the most
down-gradient basins. For each basin, any inflow to the basin is added to the estimate of basin
recharge, and the basin’s groundwater ET value is then subtracted. The remainder is the outflow to
the next contiguous basin(s) located down-gradient. For basins having more than one outflow
boundary, independent estimates of selected outflow boundaries were made.

[.1.3 Solver Input Information and Solutions

Summary tables of the information used for the four flow systems and the solver solution are
provided in TablesI-1 through 1-4. No separate solution was sought for the small portion of
Las Vegas Valley located within the model area. Recharge for this area was calculated using the
solution derived for the nearest flow system, namely the WRFS.
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[.1.3.1 Recharge Solutions and Detailed Comparisons to Reported Values

The estimated recharge volumes and previously reported estimates are provided in Tables|-5 and
[-6. Tablel-5 contains estimates reported prior to 2004, and Table -6 contains values reported
starting in 2004. The annual recharge volume for the portion of Las Vegas Valley contained within
the model areawas calculated using the recharge efficiencies derived for the WRFS and isincluded in
the groundwater budgets presented in the next section.

[.1.3.2 Groundwater Budgets

The detailed groundwater budgets derived using the Excel® Solver are presented in Tablel-7. The
portion of Las Vegas Valley contained within the model area was added to the budget. In this budget,
the recharge was assumed to flow out to Three Lakes Valley. The groundwater budgets for the flow
systems with solutions are shown on four separate maps depicting the regional flow patterns within
each of the flow systems in the following order: GVFS, GSLDFS, MVFS, and WRFS (Figures|-1
through 1-4). The regional direction of groundwater flow is represented by arrows on basin
boundaries where interbasin flow was interpreted to occur.
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table I-1
GVFS: Solver Information
Target: Groundwater ET 113,373 afy
Parameters a
b
Outflow through northern HA boundary of Steptoe Valley
Outflow from Butte Valley South to Butte Valley North
Constraints Total outflow: 3,000 to 18,000 afy
Inflow from Butte Valley South to Steptoe Valley: > 0 afy
Outflow from northern Butte Valley South: 1,000 to 8,000 afy
Outflow from northern Steptoe Valley: 2,000 to 10,000 afy
a=0
b>0
a initial: 0.00008
b initial: 3.62
Maximum efficiency: < 0.63
Solution: a 0.01670
Solution: b 2.2232
gggii;)::v;)”:t;low through northern HA boundary of 2,000 afy
\S/;)llllét;/opl.or%utﬂow from Butte Valley South to Butte 1,000 afy
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Table I-2

GSLDFS: Solver Information

Target: Groundwater ET

209,642 afy

Parameters

a

b

Outflow through Confusion Range

Outflow through northern Snake Valley

Inflow to Spring Valley from Tippett Valley

Constraints

Outflow from Snake Valley to Tule Valley: 1,000 to 52,000 afy (this
range was adjusted to 15,000 to 52,000 afy following preliminary
testing)

Outflow from northern Snake Valley: 1,000 to 30,000 afy

Outflow to Tule Valley is 1.6 times that to the north as determined
using the outflow means from the Monte Carlo analysis

Outflow from Tippett Valley to north: 3,000 to 29,000 afy

Inflow to Spring Valley from Tippett Valley: >0 afy

Recharge of volcanic area in southern Hamlin: 23,921 afy

a=0

b=0

a initial: 0.00008

b initial: 3.62

Maximum efficiency: < 0.63

Solution: a

0.0151

Solution: b

2.2364

Solution: Outflow through Confusion Range

15,000 afy

Solution: Outflow through northern Snake Valley

9,375 afy

Solution: Inflow to Spring Valley from Tippett
Valley

0 afy

Appendix |

SE ROA 50728

JA_16129



Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province

Table I-3
MVFS: Solver Information
Target: Groundwater ET 54,228 afy
Parameters: a
b
Constraints Total outflow: 2,400 to 13,000 afy
a=0
b>0
a initial: 0.00008
b initial: 3.62
Maximum efficiency: < 0.63
Solution: a 0.00008
Solution: b 41811
Appendix | “

SE ROA 50729

JA_16130



Table 1-4

WRES: Solver Information

Target: Groundwater ET 147,791 afy
Parameters a
b
Total outflow
Inflow from Tikaboo Valley to Coyote Spring Valley
Outflow from Coyote Spring Valley to Hidden Valley, Garnet Valley, and
California Wash
Outflow from Coyote Spring Valley to Muddy River Springs Area
Constraints Total outflow: 13,000 to 37,000 afy
Outflow from Coyote Spring Valley to Hidden Valley, Garnet Valley, and
California Wash: > 2,000 afy
Inflow to White River Valley from Cave Valley: 4,000 afy
Outflow from White River Valley to Pahroc Valley: 0 to 40,000 afy
Outflow from Pahroc Valley to Dry Lake Valley: 2,000 afy
Inflow to Muddy River Springs Area from Coyote Spring Valley and Lower
Meadow Valley Wash: > 28,000 afy and <40,000 afy
Inflow from Tikaboo Valley: 1,000 to 12,000 afy
Inflow from Lower Meadow Valley Wash to Muddy River Springs Area:
1,346 afy
Inflow from Lower Meadow Valley Wash to California Wash: 1,749 afy
a=0
b>0
a initial: 0.00008
b initial: 3.62
Maximum efficiency: < 0.63
Solution: a 0.00285
Solution: b 3.0173
Solution: Total Outflow 22,082 afy
Solution: Inflow from Tikaboo Valley 7,200 afy
e o e P YLEY 4000
Solution: Coyote Spring Valley to Hidden
Valley, Garnet Valley and California Wash 16,002 afy

Inflow

I-10
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Regional Groundwater Flow in Goshute Valley Flow System
1-17

Appendix |

SE ROA 50737

JA_16138



700,000 800i000
WEY \ Eo Ve B N
White Pine 186A 261A
253
Tooel_e __________________
Juab
258
=3 =3
=3 =3
(=] (=]
O - =)
= l =
= i b
< ] <
| ~ Juab N —— —
| m———= T Millard
184
81,339
75,615 254
5,724 150,956
132,285
24,395
S
(=3 (=3
=] N =3
ST S
@ b, ]
< N <
N
< hite Pine .
Lincoln
Millard ______ — E— ]
B Beaver
255
Beaver &
Iron
Nye
o o
(=3 (=3
(=] (=]
S - =)
o o
N N
< <
] ] Grid based on Universal Transverse Mercalor projection,
700,000 800,000 Govlopad o S0 DEWL, S Al 481 At 315
Legend
Boundary Flux  Flow Labels Great Salt Lake N
ry l:l Desert Flow System
HA . W E
‘ . m Hydrographic Area
Recharge within Flow System
~500 > 1,000 * S
Inflow 63 Hydrographic Area e
Flow Potential p— 8 4 0 8 24 32 b
High Outflow* L____ County Boundary m—
. |
Low *in afy | State Boundary

MAP ID 14559-3211 07/09/2209 JAB

Figure I-2
Regional Groundwater Flow in the Great Salt Lake Desert Flow System

Appendix |

SE ROA 50738

JA_16139



Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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Conceptual Model of Groundwater Flow for the Central Carbonate-Rock Province
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